Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
from tensorflow.keras.preprocessing import image | |
import numpy as np | |
def load_models(): | |
models = {} | |
models['SimpleNN_model'] = tf.keras.models.load_model("SimpleNN_model.h5") | |
models['VGG16'] = tf.keras.models.load_model("vgg16.h5") | |
return models | |
models = load_models() | |
def predict_image(img, model_name): | |
model = models[model_name] | |
if model_name == 'SimpleNN_model': | |
img = img.resize((256, 256)) | |
elif model_name == 'VGG16': | |
img = img.resize((224, 224)) | |
img_array = image.img_to_array(img) | |
img_array = np.expand_dims(img_array, axis=0) | |
img_array = img_array / 255.0 | |
prediction = model.predict(img_array) | |
if prediction[0] < 0.5: | |
return "Cat" | |
else: | |
return "Dog" | |
interface = gr.Interface(fn=predict_image, | |
inputs=[gr.Image(type="pil"), gr.Dropdown(["SimpleNN_model", "VGG16"], label="Select Model")], | |
outputs="text", | |
title="Cat and Dog Classifier", | |
description="Upload an Image") | |
interface.launch(share=True) | |