Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
from tensorflow.keras.preprocessing import image
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load the trained model
|
7 |
+
model = tf.keras.models.load_model('cat_dog_classifier_vgg16.h5')
|
8 |
+
|
9 |
+
# Define a function to make predictions
|
10 |
+
def predict_image(img):
|
11 |
+
# Preprocess the image
|
12 |
+
img = img.resize((224, 224))
|
13 |
+
img_array = image.img_to_array(img)
|
14 |
+
img_array = np.expand_dims(img_array, axis=0)
|
15 |
+
img_array = img_array / 255.0
|
16 |
+
|
17 |
+
# Make a prediction
|
18 |
+
prediction = model.predict(img_array)
|
19 |
+
if prediction[0] < 0.5:
|
20 |
+
return "Cat"
|
21 |
+
else:
|
22 |
+
return "Dog"
|
23 |
+
|
24 |
+
# Create the Gradio interface
|
25 |
+
iface = gr.Interface(
|
26 |
+
fn=predict_image,
|
27 |
+
inputs=gr.inputs.Image(type="pil"),
|
28 |
+
outputs="text",
|
29 |
+
title="Cat and Dog Classifier",
|
30 |
+
description="Upload an image of a cat or a dog and the model will classify it.",
|
31 |
+
examples=["cat_example.jpg", "dog_example.jpg"]
|
32 |
+
)
|
33 |
+
|
34 |
+
# Launch the interface
|
35 |
+
iface.launch()
|