Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import PyPDF2
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
5 |
+
from langchain.vectorstores import Chroma
|
6 |
+
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
|
7 |
+
from langchain_groq import ChatGroq
|
8 |
+
from langchain.chains import ConversationalRetrievalChain
|
9 |
+
from langchain_community.document_loaders import WebBaseLoader
|
10 |
+
import os
|
11 |
+
|
12 |
+
# Function to process text and create ConversationalRetrievalChain
|
13 |
+
def process_text_and_create_chain(text):
|
14 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
15 |
+
texts = text_splitter.split_text(text)
|
16 |
+
metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))]
|
17 |
+
|
18 |
+
model_name = "BAAI/bge-small-en"
|
19 |
+
model_kwargs = {"device": "cpu"}
|
20 |
+
encode_kwargs = {"normalize_embeddings": True}
|
21 |
+
hf = HuggingFaceBgeEmbeddings(
|
22 |
+
model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs
|
23 |
+
)
|
24 |
+
|
25 |
+
db = Chroma.from_texts(texts, hf, metadatas=metadatas)
|
26 |
+
|
27 |
+
message_history = ChatMessageHistory()
|
28 |
+
memory = ConversationBufferMemory(
|
29 |
+
memory_key="chat_history",
|
30 |
+
output_key="answer",
|
31 |
+
chat_memory=message_history,
|
32 |
+
return_messages=True,
|
33 |
+
)
|
34 |
+
|
35 |
+
llm_groq = ChatGroq(
|
36 |
+
groq_api_key="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",
|
37 |
+
model_name='mixtral-8x7b-32768'
|
38 |
+
)
|
39 |
+
|
40 |
+
chain = ConversationalRetrievalChain.from_llm(
|
41 |
+
llm=llm_groq,
|
42 |
+
chain_type="stuff",
|
43 |
+
retriever=db.as_retriever(),
|
44 |
+
memory=memory,
|
45 |
+
return_source_documents=True,
|
46 |
+
)
|
47 |
+
|
48 |
+
return chain
|
49 |
+
|
50 |
+
# Initialize global variables
|
51 |
+
global_chain = None
|
52 |
+
|
53 |
+
# Function to handle PDF upload
|
54 |
+
def handle_pdf_upload(file):
|
55 |
+
if file is None:
|
56 |
+
return "No file uploaded. Please upload a PDF file.", gr.update(visible=False), gr.update(visible=True)
|
57 |
+
|
58 |
+
if not file.name.lower().endswith('.pdf'):
|
59 |
+
return "Error: Please upload a PDF file.", gr.update(visible=False), gr.update(visible=True)
|
60 |
+
|
61 |
+
try:
|
62 |
+
print(f"Processing file: {file.name}")
|
63 |
+
pdf_reader = PyPDF2.PdfReader(file.name)
|
64 |
+
pdf_text = ""
|
65 |
+
for page in pdf_reader.pages:
|
66 |
+
pdf_text += page.extract_text()
|
67 |
+
|
68 |
+
global global_chain
|
69 |
+
global_chain = process_text_and_create_chain(pdf_text)
|
70 |
+
return "PDF processed successfully.", gr.update(visible=True), gr.update(visible=False)
|
71 |
+
except Exception as e:
|
72 |
+
print(f"Error processing PDF: {str(e)}")
|
73 |
+
return f"Error processing PDF: {str(e)}", gr.update(visible=False), gr.update(visible=True)
|
74 |
+
|
75 |
+
# Function to handle link input
|
76 |
+
def handle_link_input(link):
|
77 |
+
try:
|
78 |
+
loader = WebBaseLoader(link)
|
79 |
+
data = loader.load()
|
80 |
+
doc = "\n".join([doc.page_content for doc in data])
|
81 |
+
|
82 |
+
global global_chain
|
83 |
+
global_chain = process_text_and_create_chain(doc)
|
84 |
+
return "Link processed successfully.", gr.update(visible=True), gr.update(visible=False)
|
85 |
+
except Exception as e:
|
86 |
+
print(f"Error processing link: {str(e)}")
|
87 |
+
return f"Error processing link: {str(e)}", gr.update(visible=False), gr.update(visible=True)
|
88 |
+
|
89 |
+
# Function to handle user query
|
90 |
+
def handle_query(query, chatbot):
|
91 |
+
if global_chain is None:
|
92 |
+
return chatbot + [("Bot", "Please provide input first.")]
|
93 |
+
try:
|
94 |
+
result = global_chain({"question": query})
|
95 |
+
return chatbot + [("You", query), ("System", result['answer'])]
|
96 |
+
except Exception as e:
|
97 |
+
print(f"Error processing query: {str(e)}")
|
98 |
+
return chatbot + [("Bot", f"Error: {str(e)}")]
|
99 |
+
|
100 |
+
# Function to toggle input method
|
101 |
+
def toggle_input_method(input_method):
|
102 |
+
if input_method == "Upload PDF":
|
103 |
+
return gr.update(visible=True), gr.update(visible=False)
|
104 |
+
elif input_method == "Paste Link":
|
105 |
+
return gr.update(visible=False), gr.update(visible=True)
|
106 |
+
else:
|
107 |
+
return gr.update(visible=False), gr.update(visible=False)
|
108 |
+
|
109 |
+
# Gradio interface
|
110 |
+
with gr.Blocks() as demo:
|
111 |
+
gr.Markdown("# Chat-With-Context")
|
112 |
+
|
113 |
+
with gr.Row():
|
114 |
+
input_method = gr.Radio(["Upload PDF", "Paste Link"], label="Choose Input Method", interactive=True)
|
115 |
+
|
116 |
+
with gr.Row(visible=False) as upload_section:
|
117 |
+
pdf_input = gr.File(label="Upload PDF")
|
118 |
+
upload_button = gr.Button("Process PDF")
|
119 |
+
|
120 |
+
with gr.Row(visible=False) as text_input_section:
|
121 |
+
text_input = gr.Textbox(label="Paste Link")
|
122 |
+
submit_text_button = gr.Button("Process Link")
|
123 |
+
|
124 |
+
input_status = gr.Textbox(label="Status", interactive=False)
|
125 |
+
|
126 |
+
with gr.Row(visible=False) as chat_section:
|
127 |
+
chatbot = gr.Chatbot(label="Chat")
|
128 |
+
query_input = gr.Textbox(label="Write Your Question", placeholder="Message Chat-With-Context")
|
129 |
+
send_button = gr.Button("Send")
|
130 |
+
|
131 |
+
input_method.change(toggle_input_method, inputs=input_method, outputs=[upload_section, text_input_section])
|
132 |
+
upload_button.click(fn=handle_pdf_upload, inputs=pdf_input, outputs=[input_status, chat_section, upload_section])
|
133 |
+
submit_text_button.click(fn=handle_link_input, inputs=text_input, outputs=[input_status, chat_section, text_input_section])
|
134 |
+
send_button.click(fn=handle_query, inputs=[query_input, chatbot], outputs=chatbot)
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
demo.launch(share=True)
|