Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -38,19 +38,70 @@
|
|
38 |
# if __name__ == "__main__":
|
39 |
# demo.launch()
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
import gradio as gr
|
42 |
import cv2
|
43 |
import numpy as np
|
44 |
from ultralytics import YOLO
|
45 |
|
46 |
|
47 |
-
|
|
|
48 |
|
49 |
def process_image(image):
|
50 |
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
51 |
-
|
|
|
52 |
|
53 |
-
detected_faces = len(
|
|
|
54 |
|
55 |
if detected_faces == 1:
|
56 |
mask_tensor = results[0].masks.data[0].cpu().numpy()
|
@@ -65,13 +116,21 @@ def process_image(image):
|
|
65 |
rgba_image[:, :, 3] = mask
|
66 |
|
67 |
return rgba_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
# Return a blank image with error text
|
70 |
-
error_image = np.zeros((300, 500, 3), dtype=np.uint8)
|
71 |
-
error_message = "Error: More than one face detected."
|
72 |
-
cv2.putText(error_image, error_message, (20, 150), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2, cv2.LINE_AA)
|
73 |
|
74 |
-
return error_image
|
75 |
|
76 |
demo = gr.Interface(
|
77 |
fn=process_image,
|
|
|
38 |
# if __name__ == "__main__":
|
39 |
# demo.launch()
|
40 |
|
41 |
+
# import gradio as gr
|
42 |
+
# import cv2
|
43 |
+
# import numpy as np
|
44 |
+
# from ultralytics import YOLO
|
45 |
+
|
46 |
+
|
47 |
+
# model = YOLO(r"best.pt")
|
48 |
+
|
49 |
+
# def process_image(image):
|
50 |
+
# image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
51 |
+
# results = model.predict(image, conf=0.15)
|
52 |
+
|
53 |
+
# detected_faces = len(results[0].boxes.cls) if results[0].boxes is not None else 0
|
54 |
+
|
55 |
+
# if detected_faces == 1:
|
56 |
+
# mask_tensor = results[0].masks.data[0].cpu().numpy()
|
57 |
+
# mask = (mask_tensor * 255).astype(np.uint8)
|
58 |
+
|
59 |
+
# mask = cv2.resize(mask, (image.shape[1], image.shape[0]))
|
60 |
+
# kernel = np.ones((5, 5), np.uint8)
|
61 |
+
# mask = cv2.dilate(mask, kernel, iterations=2)
|
62 |
+
# mask = cv2.erode(mask, kernel, iterations=2)
|
63 |
+
|
64 |
+
# rgba_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGBA)
|
65 |
+
# rgba_image[:, :, 3] = mask
|
66 |
+
|
67 |
+
# return rgba_image
|
68 |
+
|
69 |
+
# # Return a blank image with error text
|
70 |
+
# error_image = np.zeros((300, 500, 3), dtype=np.uint8)
|
71 |
+
# error_message = "Error: More than one face detected."
|
72 |
+
# cv2.putText(error_image, error_message, (20, 150), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2, cv2.LINE_AA)
|
73 |
+
|
74 |
+
# return error_image
|
75 |
+
|
76 |
+
# demo = gr.Interface(
|
77 |
+
# fn=process_image,
|
78 |
+
# inputs=gr.Image(type="numpy"),
|
79 |
+
# outputs=gr.Image(type="numpy"),
|
80 |
+
# title="Face Segmentation",
|
81 |
+
# description="Upload a singale face image"
|
82 |
+
# )
|
83 |
+
|
84 |
+
# if __name__ == "__main__":
|
85 |
+
# demo.launch()
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
import gradio as gr
|
90 |
import cv2
|
91 |
import numpy as np
|
92 |
from ultralytics import YOLO
|
93 |
|
94 |
|
95 |
+
face_model = YOLO(r"face_det.pt")
|
96 |
+
seg_model = YOLO(r"seg_model.pt")
|
97 |
|
98 |
def process_image(image):
|
99 |
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
100 |
+
face_results = face_model.predict(image, conf=0.5, save=True)
|
101 |
+
results = seg_model.predict(image, conf=0.15)
|
102 |
|
103 |
+
detected_faces = len(face_results[0].boxes.cls) if results[0].boxes is not None else 0
|
104 |
+
print(detected_faces)
|
105 |
|
106 |
if detected_faces == 1:
|
107 |
mask_tensor = results[0].masks.data[0].cpu().numpy()
|
|
|
116 |
rgba_image[:, :, 3] = mask
|
117 |
|
118 |
return rgba_image
|
119 |
+
elif detected_faces >= 1:
|
120 |
+
# Return a blank image with error text
|
121 |
+
error_image = np.zeros((300, 500, 3), dtype=np.uint8)
|
122 |
+
error_message = "Error: More than one face detected."
|
123 |
+
cv2.putText(error_image, error_message, (20, 150), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2, cv2.LINE_AA)
|
124 |
+
return error_image
|
125 |
+
elif detected_faces == 0:
|
126 |
+
# Return a blank image with error text
|
127 |
+
error_image = np.zeros((300, 500, 3), dtype=np.uint8)
|
128 |
+
error_message = "Error: No face detected."
|
129 |
+
cv2.putText(error_image, error_message, (20, 150), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2, cv2.LINE_AA)
|
130 |
+
return error_image
|
131 |
+
|
132 |
|
|
|
|
|
|
|
|
|
133 |
|
|
|
134 |
|
135 |
demo = gr.Interface(
|
136 |
fn=process_image,
|