# import gradio as gr # import cv2 # import numpy as np # from ultralytics import YOLO # model = YOLO(r"best.pt") # def process_image(image): # image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # results = model.predict(image, conf=0.15) # if len(results[0].boxes.cls) == 1: # mask_tensor = results[0].masks.data[0].cpu().numpy() # mask = (mask_tensor * 255).astype(np.uint8) # mask = cv2.resize(mask, (image.shape[1], image.shape[0])) # kernel = np.ones((5, 5), np.uint8) # mask = cv2.dilate(mask, kernel, iterations=2) # mask = cv2.erode(mask, kernel, iterations=2) # rgba_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGBA) # rgba_image[:, :, 3] = mask # return rgba_image # else: # return "Error: Uploaded image has more than one face. Please upload a different image." # demo = gr.Interface( # fn=process_image, # inputs=gr.Image(type="numpy"), # outputs=gr.Image(type="numpy"), # title="Face Segmentation", # description="Upload an image" # ) # if __name__ == "__main__": # demo.launch() import gradio as gr import cv2 import numpy as np from ultralytics import YOLO model = YOLO(r"best.pt") def process_image(image): image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) results = model.predict(image, conf=0.15) detected_faces = len(results[0].boxes.cls) if results[0].boxes is not None else 0 if detected_faces == 1: mask_tensor = results[0].masks.data[0].cpu().numpy() mask = (mask_tensor * 255).astype(np.uint8) mask = cv2.resize(mask, (image.shape[1], image.shape[0])) kernel = np.ones((5, 5), np.uint8) mask = cv2.dilate(mask, kernel, iterations=2) mask = cv2.erode(mask, kernel, iterations=2) rgba_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGBA) rgba_image[:, :, 3] = mask return rgba_image elif detected_faces > 1: return "Error: Uploaded image has more than one face. Please upload a different image." else: return "Error: No face detected. Please upload a valid image." demo = gr.Interface( fn=process_image, inputs=gr.Image(type="numpy"), outputs=gr.Image(type="numpy"), title="Face Segmentation", description="Upload an image" ) if __name__ == "__main__": demo.launch()