sudiptaverse commited on
Commit
1fb04cc
·
verified ·
1 Parent(s): d570061

Upload app.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +39 -0
app.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
2
+ from langchain_core.prompts import ChatPromptTemplate
3
+ from langchain_huggingface import HuggingFacePipeline
4
+ from langchain_core.runnables import RunnableSequence
5
+ import gradio as gr
6
+
7
+ # Load model
8
+ model_id = "google/gemma-2b"
9
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
10
+ model = AutoModelForCausalLM.from_pretrained(model_id)
11
+
12
+ # Text generation pipeline
13
+ generator = pipeline(
14
+ "text-generation",
15
+ model=model,
16
+ tokenizer=tokenizer,
17
+ max_new_tokens=200,
18
+ do_sample=True,
19
+ temperature=0.7
20
+ )
21
+
22
+ # LangChain wrapper
23
+ llm = HuggingFacePipeline(pipeline=generator)
24
+
25
+ # Prompt template
26
+ prompt = ChatPromptTemplate.from_messages([
27
+ ("system", "You are a helpful assistant. Please respond to the user queries."),
28
+ ("user", "Question: {question}")
29
+ ])
30
+
31
+ # Runnable sequence instead of LLMChain
32
+ chain = prompt | llm
33
+
34
+ # Gradio interface
35
+ def generate_answer(question):
36
+ result = chain.invoke({"question": question})
37
+ return result
38
+
39
+ gr.Interface(fn=generate_answer, inputs="text", outputs="text", title="Gemma 2B Chat").launch()