sudiptaverse commited on
Commit
4d2f3d1
·
verified ·
1 Parent(s): 4384955

Upload app.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +7 -12
app.py CHANGED
@@ -1,8 +1,5 @@
1
  from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
2
  from langchain_core.prompts import ChatPromptTemplate
3
- from langchain.prompts import PromptTemplate
4
- from langchain_core.output_parsers import StrOutputParser
5
- from langchain.memory import ConversationSummaryMemory
6
  from langchain_huggingface import HuggingFacePipeline
7
  from langchain_core.runnables import RunnableSequence
8
  import gradio as gr
@@ -17,28 +14,26 @@ generator = pipeline(
17
  "text-generation",
18
  model=model,
19
  tokenizer=tokenizer,
20
- max_new_tokens=100,
21
  do_sample=True,
22
  temperature=0.7
23
  )
24
 
25
-
26
-
27
  # LangChain wrapper
28
  llm = HuggingFacePipeline(pipeline=generator)
29
 
30
  # Prompt template
31
  prompt = ChatPromptTemplate.from_messages([
32
- ("system", "You are a helpful assistant. Explain the following code clearly:\n\n{code}")
 
33
  ])
34
 
35
  # Runnable sequence instead of LLMChain
36
- chain = prompt | llm | StrOutputParser()
37
-
38
 
39
  # Gradio interface
40
- def generate_answer(input_code):
41
- result = chain.invoke({"code":input_code })
42
  return result
43
 
44
- gr.Interface(fn=generate_answer, inputs="text", outputs="text", title="Gemma 2B Code Explainer").launch()
 
1
  from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
2
  from langchain_core.prompts import ChatPromptTemplate
 
 
 
3
  from langchain_huggingface import HuggingFacePipeline
4
  from langchain_core.runnables import RunnableSequence
5
  import gradio as gr
 
14
  "text-generation",
15
  model=model,
16
  tokenizer=tokenizer,
17
+ max_new_tokens=200,
18
  do_sample=True,
19
  temperature=0.7
20
  )
21
 
 
 
22
  # LangChain wrapper
23
  llm = HuggingFacePipeline(pipeline=generator)
24
 
25
  # Prompt template
26
  prompt = ChatPromptTemplate.from_messages([
27
+ ("system", "You are a helpful assistant. Please respond to the user queries."),
28
+ ("user", "Question: {question}")
29
  ])
30
 
31
  # Runnable sequence instead of LLMChain
32
+ chain = prompt | llm
 
33
 
34
  # Gradio interface
35
+ def generate_answer(question):
36
+ result = chain.invoke({"question": question})
37
  return result
38
 
39
+ gr.Interface(fn=generate_answer, inputs="text", outputs="text", title="Gemma 2B Chat").launch()