Spaces:
Build error
Build error
eliphatfs
commited on
Commit
·
a22ab8b
1
Parent(s):
1059e8f
Use gradio UI.
Browse files- Dockerfile +1 -1
- gradio_app.py +204 -0
- requirements.txt +2 -0
Dockerfile
CHANGED
@@ -37,4 +37,4 @@ COPY --chown=user . $HOME/app
|
|
37 |
|
38 |
RUN python3 download_checkpoints.py
|
39 |
|
40 |
-
CMD ["
|
|
|
37 |
|
38 |
RUN python3 download_checkpoints.py
|
39 |
|
40 |
+
CMD ["python", "gradio_app.py"]
|
gradio_app.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import fire
|
4 |
+
import gradio as gr
|
5 |
+
from PIL import Image
|
6 |
+
from functools import partial
|
7 |
+
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
8 |
+
|
9 |
+
import cv2
|
10 |
+
import time
|
11 |
+
import numpy as np
|
12 |
+
from rembg import remove
|
13 |
+
from segment_anything import sam_model_registry, SamPredictor
|
14 |
+
|
15 |
+
_TITLE = '''Zero123++: a Single Image to Consistent Multi-view Diffusion Base Model'''
|
16 |
+
_DESCRIPTION = '''
|
17 |
+
<div>
|
18 |
+
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2310.15110"><img src="https://img.shields.io/badge/2310.15110-f9f7f7?logo="></a>
|
19 |
+
<a style="display:inline-block; margin-left: .5em" href='https://github.com/SUDO-AI-3D/zero123plus'><img src='https://img.shields.io/github/stars/SUDO-AI-3D/zero123plus?style=social' /></a>
|
20 |
+
</div>
|
21 |
+
'''
|
22 |
+
_GPU_ID = 0
|
23 |
+
|
24 |
+
|
25 |
+
if not hasattr(Image, 'Resampling'):
|
26 |
+
Image.Resampling = Image
|
27 |
+
|
28 |
+
|
29 |
+
def sam_init():
|
30 |
+
sam_checkpoint = os.path.join(os.path.dirname(__file__), "tmp", "sam_vit_h_4b8939.pth")
|
31 |
+
model_type = "vit_h"
|
32 |
+
|
33 |
+
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=f"cuda:{_GPU_ID}")
|
34 |
+
predictor = SamPredictor(sam)
|
35 |
+
return predictor
|
36 |
+
|
37 |
+
def sam_segment(predictor, input_image, *bbox_coords):
|
38 |
+
bbox = np.array(bbox_coords)
|
39 |
+
image = np.asarray(input_image)
|
40 |
+
|
41 |
+
start_time = time.time()
|
42 |
+
predictor.set_image(image)
|
43 |
+
|
44 |
+
masks_bbox, scores_bbox, logits_bbox = predictor.predict(
|
45 |
+
box=bbox,
|
46 |
+
multimask_output=True
|
47 |
+
)
|
48 |
+
|
49 |
+
print(f"SAM Time: {time.time() - start_time:.3f}s")
|
50 |
+
out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
|
51 |
+
out_image[:, :, :3] = image
|
52 |
+
out_image_bbox = out_image.copy()
|
53 |
+
out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255
|
54 |
+
torch.cuda.empty_cache()
|
55 |
+
return Image.fromarray(out_image_bbox, mode='RGBA')
|
56 |
+
|
57 |
+
def expand2square(pil_img, background_color):
|
58 |
+
width, height = pil_img.size
|
59 |
+
if width == height:
|
60 |
+
return pil_img
|
61 |
+
elif width > height:
|
62 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
63 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
64 |
+
return result
|
65 |
+
else:
|
66 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
67 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
68 |
+
return result
|
69 |
+
|
70 |
+
def preprocess(predictor, input_image, chk_group=None, segment=True, rescale=False):
|
71 |
+
RES = 1024
|
72 |
+
input_image.thumbnail([RES, RES], Image.Resampling.LANCZOS)
|
73 |
+
if chk_group is not None:
|
74 |
+
segment = "Background Removal" in chk_group
|
75 |
+
rescale = "Rescale" in chk_group
|
76 |
+
if segment:
|
77 |
+
image_rem = input_image.convert('RGBA')
|
78 |
+
image_nobg = remove(image_rem, alpha_matting=True)
|
79 |
+
arr = np.asarray(image_nobg)[:,:,-1]
|
80 |
+
x_nonzero = np.nonzero(arr.sum(axis=0))
|
81 |
+
y_nonzero = np.nonzero(arr.sum(axis=1))
|
82 |
+
x_min = int(x_nonzero[0].min())
|
83 |
+
y_min = int(y_nonzero[0].min())
|
84 |
+
x_max = int(x_nonzero[0].max())
|
85 |
+
y_max = int(y_nonzero[0].max())
|
86 |
+
input_image = sam_segment(predictor, input_image.convert('RGB'), x_min, y_min, x_max, y_max)
|
87 |
+
# Rescale and recenter
|
88 |
+
if rescale:
|
89 |
+
image_arr = np.array(input_image)
|
90 |
+
in_w, in_h = image_arr.shape[:2]
|
91 |
+
out_res = min(RES, max(in_w, in_h))
|
92 |
+
ret, mask = cv2.threshold(np.array(input_image.split()[-1]), 0, 255, cv2.THRESH_BINARY)
|
93 |
+
x, y, w, h = cv2.boundingRect(mask)
|
94 |
+
max_size = max(w, h)
|
95 |
+
ratio = 0.75
|
96 |
+
side_len = int(max_size / ratio)
|
97 |
+
padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8)
|
98 |
+
center = side_len//2
|
99 |
+
padded_image[center-h//2:center-h//2+h, center-w//2:center-w//2+w] = image_arr[y:y+h, x:x+w]
|
100 |
+
rgba = Image.fromarray(padded_image).resize((out_res, out_res), Image.LANCZOS)
|
101 |
+
|
102 |
+
rgba_arr = np.array(rgba) / 255.0
|
103 |
+
rgb = rgba_arr[...,:3] * rgba_arr[...,-1:] + (1 - rgba_arr[...,-1:])
|
104 |
+
input_image = Image.fromarray((rgb * 255).astype(np.uint8))
|
105 |
+
else:
|
106 |
+
input_image = expand2square(input_image, (127, 127, 127, 0))
|
107 |
+
return input_image, input_image.resize((320, 320), Image.Resampling.LANCZOS)
|
108 |
+
|
109 |
+
def gen_multiview(pipeline, predictor, input_image, scale_slider, steps_slider, seed, output_processing=False):
|
110 |
+
seed = int(seed)
|
111 |
+
torch.manual_seed(seed)
|
112 |
+
image = pipeline(input_image,
|
113 |
+
num_inference_steps=steps_slider,
|
114 |
+
guidance_scale=scale_slider,
|
115 |
+
generator=torch.Generator(pipeline.device).manual_seed(seed)).images[0]
|
116 |
+
side_len = image.width//2
|
117 |
+
subimages = [image.crop((x, y, x + side_len, y+side_len)) for y in range(0, image.height, side_len) for x in range(0, image.width, side_len)]
|
118 |
+
if "Background Removal" in output_processing:
|
119 |
+
out_images = []
|
120 |
+
for sub_image in subimages:
|
121 |
+
sub_image, _ = preprocess(predictor, sub_image.convert('RGB'), segment=True, rescale=False)
|
122 |
+
out_images.append(sub_image)
|
123 |
+
return out_images
|
124 |
+
return subimages
|
125 |
+
|
126 |
+
|
127 |
+
def run_demo():
|
128 |
+
# Load the pipeline
|
129 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
130 |
+
"sudo-ai/zero123plus-v1.1", custom_pipeline="sudo-ai/zero123plus-pipeline",
|
131 |
+
torch_dtype=torch.float16
|
132 |
+
)
|
133 |
+
# Feel free to tune the scheduler
|
134 |
+
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
135 |
+
pipeline.scheduler.config, timestep_spacing='trailing'
|
136 |
+
)
|
137 |
+
pipeline.to(f'cuda:{_GPU_ID}')
|
138 |
+
|
139 |
+
predictor = sam_init()
|
140 |
+
|
141 |
+
custom_theme = gr.themes.Soft(primary_hue="blue").set(
|
142 |
+
button_secondary_background_fill="*neutral_100",
|
143 |
+
button_secondary_background_fill_hover="*neutral_200")
|
144 |
+
custom_css = '''#disp_image {
|
145 |
+
text-align: center; /* Horizontally center the content */
|
146 |
+
}'''
|
147 |
+
|
148 |
+
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
|
149 |
+
with gr.Row():
|
150 |
+
with gr.Column(scale=1):
|
151 |
+
gr.Markdown('# ' + _TITLE)
|
152 |
+
gr.Markdown(_DESCRIPTION)
|
153 |
+
with gr.Row(variant='panel'):
|
154 |
+
with gr.Column(scale=1):
|
155 |
+
input_image = gr.Image(type='pil', image_mode='RGBA', height=320, label='Input image', tool=None)
|
156 |
+
|
157 |
+
example_folder = os.path.join(os.path.dirname(__file__), "./resources/examples")
|
158 |
+
example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)]
|
159 |
+
gr.Examples(
|
160 |
+
examples=example_fns,
|
161 |
+
inputs=[input_image],
|
162 |
+
outputs=[input_image],
|
163 |
+
cache_examples=False,
|
164 |
+
label='Examples (click one of the images below to start)',
|
165 |
+
examples_per_page=10
|
166 |
+
)
|
167 |
+
with gr.Accordion('Advanced options', open=False):
|
168 |
+
with gr.Row():
|
169 |
+
with gr.Column():
|
170 |
+
input_processing = gr.CheckboxGroup(['Background Removal', 'Rescale'], label='Input Image Preprocessing', value=['Background Removal'])
|
171 |
+
with gr.Column():
|
172 |
+
output_processing = gr.CheckboxGroup(['Background Removal'], label='Output Image Postprocessing', value=[])
|
173 |
+
scale_slider = gr.Slider(1, 10, value=4, step=1,
|
174 |
+
label='Classifier Free Guidance Scale')
|
175 |
+
steps_slider = gr.Slider(15, 100, value=75, step=1,
|
176 |
+
label='Number of Diffusion Inference Steps',
|
177 |
+
info="For general real or synthetic objects, around 28 is enough. For objects with delicate details such as faces (either realistic or illustration), you may need 75 or more steps.")
|
178 |
+
seed = gr.Number(42, label='Seed')
|
179 |
+
run_btn = gr.Button('Generate', variant='primary', interactive=True)
|
180 |
+
with gr.Column(scale=1):
|
181 |
+
processed_image = gr.Image(type='pil', label="Processed Image", interactive=False, height=320, tool=None, image_mode='RGBA', elem_id="disp_image")
|
182 |
+
processed_image_highres = gr.Image(type='pil', image_mode='RGBA', visible=False, tool=None)
|
183 |
+
with gr.Row():
|
184 |
+
view_1 = gr.Image(interactive=False, height=240, show_label=False)
|
185 |
+
view_2 = gr.Image(interactive=False, height=240, show_label=False)
|
186 |
+
view_3 = gr.Image(interactive=False, height=240, show_label=False)
|
187 |
+
with gr.Row():
|
188 |
+
view_4 = gr.Image(interactive=False, height=240, show_label=False)
|
189 |
+
view_5 = gr.Image(interactive=False, height=240, show_label=False)
|
190 |
+
view_6 = gr.Image(interactive=False, height=240, show_label=False)
|
191 |
+
|
192 |
+
|
193 |
+
run_btn.click(fn=partial(preprocess, predictor),
|
194 |
+
inputs=[input_image, input_processing],
|
195 |
+
outputs=[processed_image_highres, processed_image], queue=True
|
196 |
+
).success(fn=partial(gen_multiview, pipeline, predictor),
|
197 |
+
inputs=[processed_image_highres, scale_slider, steps_slider, seed, output_processing],
|
198 |
+
outputs=[view_1, view_2, view_3, view_4, view_5, view_6])
|
199 |
+
|
200 |
+
demo.queue().launch(share=True, max_threads=80)
|
201 |
+
|
202 |
+
|
203 |
+
if __name__ == '__main__':
|
204 |
+
fire.Fire(run_demo)
|
requirements.txt
CHANGED
@@ -9,3 +9,5 @@ streamlit==1.22.0
|
|
9 |
altair<5
|
10 |
huggingface_hub
|
11 |
git+https://github.com/facebookresearch/segment-anything.git
|
|
|
|
|
|
9 |
altair<5
|
10 |
huggingface_hub
|
11 |
git+https://github.com/facebookresearch/segment-anything.git
|
12 |
+
gradio>=3.50
|
13 |
+
fire
|