three / app.py
sudo-soldier's picture
Update app.py
854f993 verified
raw
history blame
4.44 kB
import gradio as gr
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
import torch
import numpy as np
from PIL import Image
import open3d as o3d
from pathlib import Path
import subprocess
# Load model and feature extractor
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
def process_image(image_path):
image_path = Path(image_path) if isinstance(image_path, str) else image_path
try:
image_raw = Image.open(image_path).convert("RGB")
except Exception as e:
return f"Error loading image: {e}"
# Resize while maintaining aspect ratio
image = image_raw.resize(
(800, int(800 * image_raw.size[1] / image_raw.size[0])),
Image.Resampling.LANCZOS
)
encoding = feature_extractor(image, return_tensors="pt")
with torch.no_grad():
outputs = model(**encoding)
predicted_depth = outputs.predicted_depth
# Normalize depth image
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=image.size[::-1],
mode="bicubic",
align_corners=False,
).squeeze()
output = prediction.cpu().numpy()
if np.max(output) > 0:
depth_image = (output * 255 / np.max(output)).astype('uint8')
else:
depth_image = np.zeros_like(output, dtype='uint8') # Handle empty output
glb_path = create_3d_obj(np.array(image), depth_image, image_path)
if glb_path and Path(glb_path).exists():
return Image.fromarray(depth_image), glb_path, glb_path
else:
return Image.fromarray(depth_image), None, "3D model generation failed"
def create_3d_obj(rgb_image, depth_image, image_path):
try:
depth_o3d = o3d.geometry.Image(depth_image)
image_o3d = o3d.geometry.Image(rgb_image)
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
image_o3d, depth_o3d, convert_rgb_to_intensity=False)
w, h = depth_image.shape[1], depth_image.shape[0]
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
camera_intrinsic.set_intrinsics(w, h, 500, 500, w / 2, h / 2)
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic)
pcd.estimate_normals(
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30))
pcd.orient_normals_towards_camera_location(camera_location=np.array([0., 0., 1000.]))
mesh_raw, _ = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
pcd, depth=10, width=0, scale=1.1, linear_fit=True)
if not mesh_raw.has_triangles():
print("Mesh generation failed: No triangles in mesh")
return None # Mesh generation failed
# Center the mesh for better preview
bbox = pcd.get_axis_aligned_bounding_box()
mesh_raw.translate(-bbox.get_center())
# Save the 3D model as .gltf
gltf_path = str(Path.cwd() / f"{image_path.stem}.gltf")
o3d.io.write_triangle_mesh(gltf_path, mesh_raw, write_triangle_uvs=True)
# Convert .gltf to .glb
glb_path = gltf_path.replace(".gltf", ".glb")
subprocess.run(["npx", "gltf-pipeline", "-i", gltf_path, "-o", glb_path])
if Path(glb_path).exists():
return glb_path
else:
print("GLB conversion failed.")
return None
except Exception as e:
print(f"3D model generation failed: {e}")
return None
title = "Zero-shot Depth Estimation with DPT + 3D Model Preview"
description = "Upload an image to generate a depth map and reconstruct a 3D model in .glb format."
with gr.Blocks() as demo:
gr.Markdown(f"## {title}")
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="filepath", label="Upload Image")
generate_button = gr.Button("Generate 3D Model")
with gr.Column(scale=2):
depth_output = gr.Image(label="Predicted Depth", type="pil")
model_output = gr.Model3D(label="3D Model Preview (GLB)")
file_output = gr.File(label="Download 3D GLB File")
generate_button.click(fn=process_image, inputs=[image_input], outputs=[depth_output, model_output, file_output])
if __name__ == "__main__":
demo.launch()