Spaces:
Running
Running
import gradio as gr | |
from transformers import DPTFeatureExtractor, DPTForDepthEstimation | |
import torch | |
import numpy as np | |
from PIL import Image | |
import open3d as o3d | |
from pathlib import Path | |
import subprocess | |
# Load model and feature extractor | |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large") | |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") | |
def process_image(image_path): | |
image_path = Path(image_path) if isinstance(image_path, str) else image_path | |
try: | |
image_raw = Image.open(image_path).convert("RGB") | |
except Exception as e: | |
return f"Error loading image: {e}" | |
# Resize while maintaining aspect ratio | |
image = image_raw.resize( | |
(800, int(800 * image_raw.size[1] / image_raw.size[0])), | |
Image.Resampling.LANCZOS | |
) | |
encoding = feature_extractor(image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**encoding) | |
predicted_depth = outputs.predicted_depth | |
# Normalize depth image | |
prediction = torch.nn.functional.interpolate( | |
predicted_depth.unsqueeze(1), | |
size=image.size[::-1], | |
mode="bicubic", | |
align_corners=False, | |
).squeeze() | |
output = prediction.cpu().numpy() | |
if np.max(output) > 0: | |
depth_image = (output * 255 / np.max(output)).astype('uint8') | |
else: | |
depth_image = np.zeros_like(output, dtype='uint8') # Handle empty output | |
glb_path = create_3d_obj(np.array(image), depth_image, image_path) | |
if glb_path and Path(glb_path).exists(): | |
return Image.fromarray(depth_image), glb_path, glb_path | |
else: | |
return Image.fromarray(depth_image), None, "3D model generation failed" | |
def create_3d_obj(rgb_image, depth_image, image_path): | |
try: | |
depth_o3d = o3d.geometry.Image(depth_image) | |
image_o3d = o3d.geometry.Image(rgb_image) | |
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth( | |
image_o3d, depth_o3d, convert_rgb_to_intensity=False) | |
w, h = depth_image.shape[1], depth_image.shape[0] | |
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic() | |
camera_intrinsic.set_intrinsics(w, h, 500, 500, w / 2, h / 2) | |
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic) | |
pcd.estimate_normals( | |
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30)) | |
pcd.orient_normals_towards_camera_location(camera_location=np.array([0., 0., 1000.])) | |
mesh_raw, _ = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson( | |
pcd, depth=10, width=0, scale=1.1, linear_fit=True) | |
if not mesh_raw.has_triangles(): | |
print("Mesh generation failed: No triangles in mesh") | |
return None # Mesh generation failed | |
# Center the mesh for better preview | |
bbox = pcd.get_axis_aligned_bounding_box() | |
mesh_raw.translate(-bbox.get_center()) | |
# Save the 3D model as .gltf | |
gltf_path = str(Path.cwd() / f"{image_path.stem}.gltf") | |
o3d.io.write_triangle_mesh(gltf_path, mesh_raw, write_triangle_uvs=True) | |
# Convert .gltf to .glb | |
glb_path = gltf_path.replace(".gltf", ".glb") | |
subprocess.run(["npx", "gltf-pipeline", "-i", gltf_path, "-o", glb_path]) | |
if Path(glb_path).exists(): | |
return glb_path | |
else: | |
print("GLB conversion failed.") | |
return None | |
except Exception as e: | |
print(f"3D model generation failed: {e}") | |
return None | |
title = "Zero-shot Depth Estimation with DPT + 3D Model Preview" | |
description = "Upload an image to generate a depth map and reconstruct a 3D model in .glb format." | |
with gr.Blocks() as demo: | |
gr.Markdown(f"## {title}") | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
image_input = gr.Image(type="filepath", label="Upload Image") | |
generate_button = gr.Button("Generate 3D Model") | |
with gr.Column(scale=2): | |
depth_output = gr.Image(label="Predicted Depth", type="pil") | |
model_output = gr.Model3D(label="3D Model Preview (GLB)") | |
file_output = gr.File(label="Download 3D GLB File") | |
generate_button.click(fn=process_image, inputs=[image_input], outputs=[depth_output, model_output, file_output]) | |
if __name__ == "__main__": | |
demo.launch() | |