sudo-soldier commited on
Commit
724f908
·
verified ·
1 Parent(s): 46ea316

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -134
app.py CHANGED
@@ -1,145 +1,26 @@
1
  import gradio as gr
2
- from transformers import DPTFeatureExtractor, DPTForDepthEstimation
3
- import torch
4
- import numpy as np
5
- from PIL import Image
6
- import open3d as o3d
7
- from pathlib import Path
8
  import os
9
 
10
- feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
11
- model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
12
 
 
 
13
 
14
- def process_image(image_path):
15
- image_path = Path(image_path)
16
- image_raw = Image.open(image_path)
17
- image = image_raw.resize(
18
- (800, int(800 * image_raw.size[1] / image_raw.size[0])),
19
- Image.Resampling.LANCZOS)
20
 
21
- # prepare image for the model
22
- encoding = feature_extractor(image, return_tensors="pt")
23
-
24
- # forward pass
25
- with torch.no_grad():
26
- outputs = model(**encoding)
27
- predicted_depth = outputs.predicted_depth
28
-
29
- # interpolate to original size
30
- prediction = torch.nn.functional.interpolate(
31
- predicted_depth.unsqueeze(1),
32
- size=image.size[::-1],
33
- mode="bicubic",
34
- align_corners=False,
35
- ).squeeze()
36
- output = prediction.cpu().numpy()
37
- depth_image = (output * 255 / np.max(output)).astype('uint8')
38
- try:
39
- gltf_path = create_3d_obj(np.array(image), depth_image, image_path)
40
- img = Image.fromarray(depth_image)
41
- return [img, gltf_path, gltf_path]
42
- except Exception as e:
43
- gltf_path = create_3d_obj(
44
- np.array(image), depth_image, image_path, depth=8)
45
- img = Image.fromarray(depth_image)
46
- return [img, gltf_path, gltf_path]
47
- except:
48
- print("Error reconstructing 3D model")
49
- raise Exception("Error reconstructing 3D model")
50
-
51
-
52
- def create_3d_obj(rgb_image, depth_image, image_path, depth=10):
53
- depth_o3d = o3d.geometry.Image(depth_image)
54
- image_o3d = o3d.geometry.Image(rgb_image)
55
- rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
56
- image_o3d, depth_o3d, convert_rgb_to_intensity=False)
57
- w = int(depth_image.shape[1])
58
- h = int(depth_image.shape[0])
59
-
60
- camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
61
- camera_intrinsic.set_intrinsics(w, h, 500, 500, w/2, h/2)
62
-
63
- pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
64
- rgbd_image, camera_intrinsic)
65
-
66
- print('normals')
67
- pcd.normals = o3d.utility.Vector3dVector(
68
- np.zeros((1, 3))) # invalidate existing normals
69
- pcd.estimate_normals(
70
- search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30))
71
- pcd.orient_normals_towards_camera_location(
72
- camera_location=np.array([0., 0., 1000.]))
73
- pcd.transform([[1, 0, 0, 0],
74
- [0, -1, 0, 0],
75
- [0, 0, -1, 0],
76
- [0, 0, 0, 1]])
77
- pcd.transform([[-1, 0, 0, 0],
78
- [0, 1, 0, 0],
79
- [0, 0, 1, 0],
80
- [0, 0, 0, 1]])
81
-
82
- print('run Poisson surface reconstruction')
83
- with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
84
- mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
85
- pcd, depth=depth, width=0, scale=1.1, linear_fit=True)
86
-
87
- voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / 256
88
- print(f'voxel_size = {voxel_size:e}')
89
- mesh = mesh_raw.simplify_vertex_clustering(
90
- voxel_size=voxel_size,
91
- contraction=o3d.geometry.SimplificationContraction.Average)
92
-
93
- # vertices_to_remove = densities < np.quantile(densities, 0.001)
94
- # mesh.remove_vertices_by_mask(vertices_to_remove)
95
- bbox = pcd.get_axis_aligned_bounding_box()
96
- mesh_crop = mesh.crop(bbox)
97
- gltf_path = f'./{image_path.stem}.gltf'
98
- o3d.io.write_triangle_mesh(
99
- gltf_path, mesh_crop, write_triangle_uvs=True)
100
- return gltf_path
101
-
102
-
103
- title = "Demo: zero-shot depth estimation with DPT + 3D Point Cloud"
104
- description = "This demo is a variation from the original <a href='https://huggingface.co/spaces/nielsr/dpt-depth-estimation' target='_blank'>DPT Demo</a>. It uses the DPT model to predict the depth of an image and then uses 3D Point Cloud to create a 3D object."
105
-
106
- # Add both image and model examples
107
- examples = [
108
- ["examples/" + img] for img in os.listdir("files/")
109
- ] + [
110
- [os.path.join(os.path.dirname(__file__), "files/model1.glb")],
111
- [os.path.join(os.path.dirname(__file__), "files/model2.glb")],
112
- [os.path.join(os.path.dirname(__file__), "files/model3.glb")],
113
- [os.path.join(os.path.dirname(__file__), "files/model4.glb")],
114
- ["https://huggingface.co/datasets/dylanebert/3dgs/resolve/main/bonsai/bonsai-7k-mini.splat"],
115
- ]
116
-
117
- iface = gr.Interface(fn=process_image,
118
- inputs=[gr.Image(
119
- type="filepath", label="Input Image")],
120
- outputs=[gr.Image(label="predicted depth", type="pil"),
121
- gr.Model3D(label="3d mesh reconstruction", clear_color=[
122
- 1.0, 1.0, 1.0, 1.0]),
123
- gr.File(label="3d gLTF")],
124
- title=title,
125
- description=description,
126
- examples=examples,
127
- allow_flagging="never",
128
- cache_examples=False)
129
 
130
  if __name__ == "__main__":
131
- iface.launch()
132
-
133
-
134
-
135
-
136
-
137
-
138
-
139
-
140
-
141
-
142
-
143
 
144
 
145
 
 
1
  import gradio as gr
 
 
 
 
 
 
2
  import os
3
 
 
 
4
 
5
+ def load_mesh(mesh_file_name):
6
+ return mesh_file_name
7
 
 
 
 
 
 
 
8
 
9
+ demo = gr.Interface(
10
+ fn=load_mesh,
11
+ inputs=gr.Model3D(),
12
+ outputs=gr.Model3D(
13
+ clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model"),
14
+ examples=[
15
+ [os.path.join(os.path.dirname(__file__), "files/model1.glb")],
16
+ [os.path.join(os.path.dirname(__file__), "files/model2.glb")],
17
+ [os.path.join(os.path.dirname(__file__), "files/model3.glb")],
18
+ [os.path.join(os.path.dirname(__file__), "files/model4.glb")],
19
+ ],
20
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  if __name__ == "__main__":
23
+ demo.launch()
 
 
 
 
 
 
 
 
 
 
 
24
 
25
 
26