Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,145 +1,26 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
3 |
-
import torch
|
4 |
-
import numpy as np
|
5 |
-
from PIL import Image
|
6 |
-
import open3d as o3d
|
7 |
-
from pathlib import Path
|
8 |
import os
|
9 |
|
10 |
-
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
11 |
-
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
12 |
|
|
|
|
|
13 |
|
14 |
-
def process_image(image_path):
|
15 |
-
image_path = Path(image_path)
|
16 |
-
image_raw = Image.open(image_path)
|
17 |
-
image = image_raw.resize(
|
18 |
-
(800, int(800 * image_raw.size[1] / image_raw.size[0])),
|
19 |
-
Image.Resampling.LANCZOS)
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
mode="bicubic",
|
34 |
-
align_corners=False,
|
35 |
-
).squeeze()
|
36 |
-
output = prediction.cpu().numpy()
|
37 |
-
depth_image = (output * 255 / np.max(output)).astype('uint8')
|
38 |
-
try:
|
39 |
-
gltf_path = create_3d_obj(np.array(image), depth_image, image_path)
|
40 |
-
img = Image.fromarray(depth_image)
|
41 |
-
return [img, gltf_path, gltf_path]
|
42 |
-
except Exception as e:
|
43 |
-
gltf_path = create_3d_obj(
|
44 |
-
np.array(image), depth_image, image_path, depth=8)
|
45 |
-
img = Image.fromarray(depth_image)
|
46 |
-
return [img, gltf_path, gltf_path]
|
47 |
-
except:
|
48 |
-
print("Error reconstructing 3D model")
|
49 |
-
raise Exception("Error reconstructing 3D model")
|
50 |
-
|
51 |
-
|
52 |
-
def create_3d_obj(rgb_image, depth_image, image_path, depth=10):
|
53 |
-
depth_o3d = o3d.geometry.Image(depth_image)
|
54 |
-
image_o3d = o3d.geometry.Image(rgb_image)
|
55 |
-
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
|
56 |
-
image_o3d, depth_o3d, convert_rgb_to_intensity=False)
|
57 |
-
w = int(depth_image.shape[1])
|
58 |
-
h = int(depth_image.shape[0])
|
59 |
-
|
60 |
-
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
|
61 |
-
camera_intrinsic.set_intrinsics(w, h, 500, 500, w/2, h/2)
|
62 |
-
|
63 |
-
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
|
64 |
-
rgbd_image, camera_intrinsic)
|
65 |
-
|
66 |
-
print('normals')
|
67 |
-
pcd.normals = o3d.utility.Vector3dVector(
|
68 |
-
np.zeros((1, 3))) # invalidate existing normals
|
69 |
-
pcd.estimate_normals(
|
70 |
-
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30))
|
71 |
-
pcd.orient_normals_towards_camera_location(
|
72 |
-
camera_location=np.array([0., 0., 1000.]))
|
73 |
-
pcd.transform([[1, 0, 0, 0],
|
74 |
-
[0, -1, 0, 0],
|
75 |
-
[0, 0, -1, 0],
|
76 |
-
[0, 0, 0, 1]])
|
77 |
-
pcd.transform([[-1, 0, 0, 0],
|
78 |
-
[0, 1, 0, 0],
|
79 |
-
[0, 0, 1, 0],
|
80 |
-
[0, 0, 0, 1]])
|
81 |
-
|
82 |
-
print('run Poisson surface reconstruction')
|
83 |
-
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
|
84 |
-
mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
|
85 |
-
pcd, depth=depth, width=0, scale=1.1, linear_fit=True)
|
86 |
-
|
87 |
-
voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / 256
|
88 |
-
print(f'voxel_size = {voxel_size:e}')
|
89 |
-
mesh = mesh_raw.simplify_vertex_clustering(
|
90 |
-
voxel_size=voxel_size,
|
91 |
-
contraction=o3d.geometry.SimplificationContraction.Average)
|
92 |
-
|
93 |
-
# vertices_to_remove = densities < np.quantile(densities, 0.001)
|
94 |
-
# mesh.remove_vertices_by_mask(vertices_to_remove)
|
95 |
-
bbox = pcd.get_axis_aligned_bounding_box()
|
96 |
-
mesh_crop = mesh.crop(bbox)
|
97 |
-
gltf_path = f'./{image_path.stem}.gltf'
|
98 |
-
o3d.io.write_triangle_mesh(
|
99 |
-
gltf_path, mesh_crop, write_triangle_uvs=True)
|
100 |
-
return gltf_path
|
101 |
-
|
102 |
-
|
103 |
-
title = "Demo: zero-shot depth estimation with DPT + 3D Point Cloud"
|
104 |
-
description = "This demo is a variation from the original <a href='https://huggingface.co/spaces/nielsr/dpt-depth-estimation' target='_blank'>DPT Demo</a>. It uses the DPT model to predict the depth of an image and then uses 3D Point Cloud to create a 3D object."
|
105 |
-
|
106 |
-
# Add both image and model examples
|
107 |
-
examples = [
|
108 |
-
["examples/" + img] for img in os.listdir("files/")
|
109 |
-
] + [
|
110 |
-
[os.path.join(os.path.dirname(__file__), "files/model1.glb")],
|
111 |
-
[os.path.join(os.path.dirname(__file__), "files/model2.glb")],
|
112 |
-
[os.path.join(os.path.dirname(__file__), "files/model3.glb")],
|
113 |
-
[os.path.join(os.path.dirname(__file__), "files/model4.glb")],
|
114 |
-
["https://huggingface.co/datasets/dylanebert/3dgs/resolve/main/bonsai/bonsai-7k-mini.splat"],
|
115 |
-
]
|
116 |
-
|
117 |
-
iface = gr.Interface(fn=process_image,
|
118 |
-
inputs=[gr.Image(
|
119 |
-
type="filepath", label="Input Image")],
|
120 |
-
outputs=[gr.Image(label="predicted depth", type="pil"),
|
121 |
-
gr.Model3D(label="3d mesh reconstruction", clear_color=[
|
122 |
-
1.0, 1.0, 1.0, 1.0]),
|
123 |
-
gr.File(label="3d gLTF")],
|
124 |
-
title=title,
|
125 |
-
description=description,
|
126 |
-
examples=examples,
|
127 |
-
allow_flagging="never",
|
128 |
-
cache_examples=False)
|
129 |
|
130 |
if __name__ == "__main__":
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
|
144 |
|
145 |
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
|
|
|
|
|
4 |
|
5 |
+
def load_mesh(mesh_file_name):
|
6 |
+
return mesh_file_name
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
demo = gr.Interface(
|
10 |
+
fn=load_mesh,
|
11 |
+
inputs=gr.Model3D(),
|
12 |
+
outputs=gr.Model3D(
|
13 |
+
clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model"),
|
14 |
+
examples=[
|
15 |
+
[os.path.join(os.path.dirname(__file__), "files/model1.glb")],
|
16 |
+
[os.path.join(os.path.dirname(__file__), "files/model2.glb")],
|
17 |
+
[os.path.join(os.path.dirname(__file__), "files/model3.glb")],
|
18 |
+
[os.path.join(os.path.dirname(__file__), "files/model4.glb")],
|
19 |
+
],
|
20 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
if __name__ == "__main__":
|
23 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
|
26 |
|