Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,12 +5,10 @@ import numpy as np
|
|
5 |
from PIL import Image
|
6 |
import open3d as o3d
|
7 |
from pathlib import Path
|
8 |
-
import os
|
9 |
|
10 |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
11 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
12 |
|
13 |
-
|
14 |
def process_image(image_path):
|
15 |
image_path = Path(image_path)
|
16 |
image_raw = Image.open(image_path)
|
@@ -18,15 +16,12 @@ def process_image(image_path):
|
|
18 |
(800, int(800 * image_raw.size[1] / image_raw.size[0])),
|
19 |
Image.Resampling.LANCZOS)
|
20 |
|
21 |
-
# prepare image for the model
|
22 |
encoding = feature_extractor(image, return_tensors="pt")
|
23 |
-
|
24 |
-
# forward pass
|
25 |
with torch.no_grad():
|
26 |
outputs = model(**encoding)
|
27 |
predicted_depth = outputs.predicted_depth
|
28 |
|
29 |
-
# interpolate to original size
|
30 |
prediction = torch.nn.functional.interpolate(
|
31 |
predicted_depth.unsqueeze(1),
|
32 |
size=image.size[::-1],
|
@@ -35,97 +30,57 @@ def process_image(image_path):
|
|
35 |
).squeeze()
|
36 |
output = prediction.cpu().numpy()
|
37 |
depth_image = (output * 255 / np.max(output)).astype('uint8')
|
|
|
38 |
try:
|
39 |
gltf_path = create_3d_obj(np.array(image), depth_image, image_path)
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
np.array(image), depth_image, image_path, depth=8)
|
45 |
-
img = Image.fromarray(depth_image)
|
46 |
-
return [img, gltf_path, gltf_path]
|
47 |
-
except:
|
48 |
-
print("Error reconstructing 3D model")
|
49 |
-
raise Exception("Error reconstructing 3D model")
|
50 |
-
|
51 |
|
52 |
def create_3d_obj(rgb_image, depth_image, image_path, depth=10):
|
53 |
depth_o3d = o3d.geometry.Image(depth_image)
|
54 |
image_o3d = o3d.geometry.Image(rgb_image)
|
55 |
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
|
56 |
image_o3d, depth_o3d, convert_rgb_to_intensity=False)
|
57 |
-
w =
|
58 |
-
h = int(depth_image.shape[0])
|
59 |
|
60 |
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
|
61 |
camera_intrinsic.set_intrinsics(w, h, 500, 500, w/2, h/2)
|
62 |
|
63 |
-
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
|
64 |
-
rgbd_image, camera_intrinsic)
|
65 |
-
|
66 |
-
print('normals')
|
67 |
-
pcd.normals = o3d.utility.Vector3dVector(
|
68 |
-
np.zeros((1, 3))) # invalidate existing normals
|
69 |
pcd.estimate_normals(
|
70 |
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30))
|
71 |
-
pcd.orient_normals_towards_camera_location(
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
[0, 0, -1, 0],
|
76 |
-
[0, 0, 0, 1]])
|
77 |
-
pcd.transform([[-1, 0, 0, 0],
|
78 |
-
[0, 1, 0, 0],
|
79 |
-
[0, 0, 1, 0],
|
80 |
-
[0, 0, 0, 1]])
|
81 |
-
|
82 |
-
print('run Poisson surface reconstruction')
|
83 |
-
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
|
84 |
-
mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
|
85 |
pcd, depth=depth, width=0, scale=1.1, linear_fit=True)
|
86 |
|
87 |
voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / 256
|
88 |
-
|
89 |
-
|
90 |
-
voxel_size=voxel_size,
|
91 |
-
contraction=o3d.geometry.SimplificationContraction.Average)
|
92 |
-
|
93 |
-
# vertices_to_remove = densities < np.quantile(densities, 0.001)
|
94 |
-
# mesh.remove_vertices_by_mask(vertices_to_remove)
|
95 |
bbox = pcd.get_axis_aligned_bounding_box()
|
96 |
mesh_crop = mesh.crop(bbox)
|
97 |
gltf_path = f'./{image_path.stem}.gltf'
|
98 |
-
o3d.io.write_triangle_mesh(
|
99 |
-
gltf_path, mesh_crop, write_triangle_uvs=True)
|
100 |
return gltf_path
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
[
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
iface = gr.Interface(fn=process_image,
|
118 |
-
inputs=[gr.Image(
|
119 |
-
type="filepath", label="Input Image")],
|
120 |
-
outputs=[gr.Image(label="predicted depth", type="pil"),
|
121 |
-
gr.Model3D(label="3d mesh reconstruction", clear_color=[
|
122 |
-
1.0, 1.0, 1.0, 1.0]),
|
123 |
-
gr.File(label="3d gLTF")],
|
124 |
-
title=title,
|
125 |
-
description=description,
|
126 |
-
examples=examples,
|
127 |
-
allow_flagging="never",
|
128 |
-
cache_examples=False)
|
129 |
|
130 |
if __name__ == "__main__":
|
131 |
iface.launch()
|
@@ -134,3 +89,4 @@ if __name__ == "__main__":
|
|
134 |
|
135 |
|
136 |
|
|
|
|
5 |
from PIL import Image
|
6 |
import open3d as o3d
|
7 |
from pathlib import Path
|
|
|
8 |
|
9 |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
10 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
11 |
|
|
|
12 |
def process_image(image_path):
|
13 |
image_path = Path(image_path)
|
14 |
image_raw = Image.open(image_path)
|
|
|
16 |
(800, int(800 * image_raw.size[1] / image_raw.size[0])),
|
17 |
Image.Resampling.LANCZOS)
|
18 |
|
|
|
19 |
encoding = feature_extractor(image, return_tensors="pt")
|
20 |
+
|
|
|
21 |
with torch.no_grad():
|
22 |
outputs = model(**encoding)
|
23 |
predicted_depth = outputs.predicted_depth
|
24 |
|
|
|
25 |
prediction = torch.nn.functional.interpolate(
|
26 |
predicted_depth.unsqueeze(1),
|
27 |
size=image.size[::-1],
|
|
|
30 |
).squeeze()
|
31 |
output = prediction.cpu().numpy()
|
32 |
depth_image = (output * 255 / np.max(output)).astype('uint8')
|
33 |
+
|
34 |
try:
|
35 |
gltf_path = create_3d_obj(np.array(image), depth_image, image_path)
|
36 |
+
except Exception:
|
37 |
+
gltf_path = create_3d_obj(np.array(image), depth_image, image_path, depth=8)
|
38 |
+
|
39 |
+
return [Image.fromarray(depth_image), gltf_path, gltf_path]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
def create_3d_obj(rgb_image, depth_image, image_path, depth=10):
|
42 |
depth_o3d = o3d.geometry.Image(depth_image)
|
43 |
image_o3d = o3d.geometry.Image(rgb_image)
|
44 |
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
|
45 |
image_o3d, depth_o3d, convert_rgb_to_intensity=False)
|
46 |
+
w, h = depth_image.shape[1], depth_image.shape[0]
|
|
|
47 |
|
48 |
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
|
49 |
camera_intrinsic.set_intrinsics(w, h, 500, 500, w/2, h/2)
|
50 |
|
51 |
+
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic)
|
|
|
|
|
|
|
|
|
|
|
52 |
pcd.estimate_normals(
|
53 |
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30))
|
54 |
+
pcd.orient_normals_towards_camera_location(camera_location=np.array([0., 0., 1000.]))
|
55 |
+
|
56 |
+
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug):
|
57 |
+
mesh_raw, _ = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
pcd, depth=depth, width=0, scale=1.1, linear_fit=True)
|
59 |
|
60 |
voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / 256
|
61 |
+
mesh = mesh_raw.simplify_vertex_clustering(voxel_size=voxel_size)
|
62 |
+
|
|
|
|
|
|
|
|
|
|
|
63 |
bbox = pcd.get_axis_aligned_bounding_box()
|
64 |
mesh_crop = mesh.crop(bbox)
|
65 |
gltf_path = f'./{image_path.stem}.gltf'
|
66 |
+
o3d.io.write_triangle_mesh(gltf_path, mesh_crop, write_triangle_uvs=True)
|
|
|
67 |
return gltf_path
|
68 |
|
69 |
+
title = "Zero-shot Depth Estimation with DPT + 3D Point Cloud"
|
70 |
+
description = "DPT model predicts depth from an image, followed by 3D Point Cloud reconstruction."
|
71 |
+
|
72 |
+
iface = gr.Interface(
|
73 |
+
fn=process_image,
|
74 |
+
inputs=[gr.Image(type="filepath", label="Input Image")],
|
75 |
+
outputs=[
|
76 |
+
gr.Image(label="Predicted Depth", type="pil"),
|
77 |
+
gr.Model3D(label="3D Mesh Reconstruction", clear_color=[1.0, 1.0, 1.0, 1.0]),
|
78 |
+
gr.File(label="3D gLTF")
|
79 |
+
],
|
80 |
+
title=title,
|
81 |
+
description=description,
|
82 |
+
allow_flagging="never"
|
83 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
if __name__ == "__main__":
|
86 |
iface.launch()
|
|
|
89 |
|
90 |
|
91 |
|
92 |
+
|