Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,119 +1,23 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
# Resize while maintaining aspect ratio
|
22 |
-
image = image_raw.resize(
|
23 |
-
(800, int(800 * image_raw.size[1] / image_raw.size[0])),
|
24 |
-
Image.Resampling.LANCZOS
|
25 |
-
)
|
26 |
-
|
27 |
-
encoding = feature_extractor(image, return_tensors="pt")
|
28 |
-
|
29 |
-
with torch.no_grad():
|
30 |
-
outputs = model(**encoding)
|
31 |
-
predicted_depth = outputs.predicted_depth
|
32 |
-
|
33 |
-
# Normalize depth image
|
34 |
-
prediction = torch.nn.functional.interpolate(
|
35 |
-
predicted_depth.unsqueeze(1),
|
36 |
-
size=image.size[::-1],
|
37 |
-
mode="bicubic",
|
38 |
-
align_corners=False,
|
39 |
-
).squeeze()
|
40 |
-
output = prediction.cpu().numpy()
|
41 |
-
|
42 |
-
if np.max(output) > 0:
|
43 |
-
depth_image = (output * 255 / np.max(output)).astype('uint8')
|
44 |
-
else:
|
45 |
-
depth_image = np.zeros_like(output, dtype='uint8') # Handle empty output
|
46 |
-
|
47 |
-
glb_path = create_3d_obj(np.array(image), depth_image, image_path)
|
48 |
-
|
49 |
-
if glb_path and Path(glb_path).exists():
|
50 |
-
return Image.fromarray(depth_image), glb_path, glb_path
|
51 |
-
else:
|
52 |
-
return Image.fromarray(depth_image), None, "3D model generation failed"
|
53 |
-
|
54 |
-
def create_3d_obj(rgb_image, depth_image, image_path):
|
55 |
-
try:
|
56 |
-
depth_o3d = o3d.geometry.Image(depth_image)
|
57 |
-
image_o3d = o3d.geometry.Image(rgb_image)
|
58 |
-
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
|
59 |
-
image_o3d, depth_o3d, convert_rgb_to_intensity=False)
|
60 |
-
|
61 |
-
w, h = depth_image.shape[1], depth_image.shape[0]
|
62 |
-
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
|
63 |
-
camera_intrinsic.set_intrinsics(w, h, 500, 500, w / 2, h / 2)
|
64 |
-
|
65 |
-
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic)
|
66 |
-
pcd.estimate_normals(
|
67 |
-
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30))
|
68 |
-
pcd.orient_normals_towards_camera_location(camera_location=np.array([0., 0., 1000.]))
|
69 |
-
|
70 |
-
mesh_raw, _ = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
|
71 |
-
pcd, depth=10, width=0, scale=1.1, linear_fit=True)
|
72 |
-
|
73 |
-
if not mesh_raw.has_triangles():
|
74 |
-
print("Mesh generation failed: No triangles in mesh")
|
75 |
-
return None # Mesh generation failed
|
76 |
-
|
77 |
-
# Center the mesh for better preview
|
78 |
-
bbox = pcd.get_axis_aligned_bounding_box()
|
79 |
-
mesh_raw.translate(-bbox.get_center())
|
80 |
-
|
81 |
-
# Save the 3D model as .gltf
|
82 |
-
gltf_path = str(Path.cwd() / f"{image_path.stem}.gltf")
|
83 |
-
o3d.io.write_triangle_mesh(gltf_path, mesh_raw, write_triangle_uvs=True)
|
84 |
-
|
85 |
-
# Convert .gltf to .glb
|
86 |
-
glb_path = gltf_path.replace(".gltf", ".glb")
|
87 |
-
subprocess.run(["npx", "gltf-pipeline", "-i", gltf_path, "-o", glb_path])
|
88 |
-
|
89 |
-
if Path(glb_path).exists():
|
90 |
-
return glb_path
|
91 |
-
else:
|
92 |
-
print("GLB conversion failed.")
|
93 |
-
return None
|
94 |
-
|
95 |
-
except Exception as e:
|
96 |
-
print(f"3D model generation failed: {e}")
|
97 |
-
return None
|
98 |
-
|
99 |
-
title = "Zero-shot Depth Estimation with DPT + 3D Model Preview"
|
100 |
-
description = "Upload an image to generate a depth map and reconstruct a 3D model in .glb format."
|
101 |
-
|
102 |
-
with gr.Blocks() as demo:
|
103 |
-
gr.Markdown(f"## {title}")
|
104 |
-
gr.Markdown(description)
|
105 |
-
|
106 |
-
with gr.Row():
|
107 |
-
with gr.Column(scale=1):
|
108 |
-
image_input = gr.Image(type="filepath", label="Upload Image")
|
109 |
-
generate_button = gr.Button("Generate 3D Model")
|
110 |
-
|
111 |
-
with gr.Column(scale=2):
|
112 |
-
depth_output = gr.Image(label="Predicted Depth", type="pil")
|
113 |
-
model_output = gr.Model3D(label="3D Model Preview (GLB)")
|
114 |
-
file_output = gr.File(label="Download 3D GLB File")
|
115 |
-
|
116 |
-
generate_button.click(fn=process_image, inputs=[image_input], outputs=[depth_output, model_output, file_output])
|
117 |
|
118 |
if __name__ == "__main__":
|
119 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
|
4 |
+
def load_mesh(mesh_file_name):
|
5 |
+
return mesh_file_name
|
6 |
+
|
7 |
+
demo = gr.Interface(
|
8 |
+
fn=load_mesh,
|
9 |
+
inputs=gr.Model3D(),
|
10 |
+
outputs=gr.Model3D(
|
11 |
+
clear_color=(0.0, 0.0, 0.0, 0.0), label="3D Model", display_mode="wireframe"),
|
12 |
+
examples=[
|
13 |
+
[os.path.join(os.path.dirname(__file__), "files/model1.glb")],
|
14 |
+
[os.path.join(os.path.dirname(__file__), "files/model2.glb")],
|
15 |
+
[os.path.join(os.path.dirname(__file__), "files/model3.glb")],
|
16 |
+
[os.path.join(os.path.dirname(__file__), "files/model4.glb")],
|
17 |
+
["https://huggingface.co/datasets/dylanebert/3dgs/resolve/main/bonsai/bonsai-7k-mini.splat"],
|
18 |
+
],
|
19 |
+
cache_examples=True
|
20 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
if __name__ == "__main__":
|
23 |
demo.launch()
|