Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import torch | |
from transformers import ( | |
WhisperForConditionalGeneration, | |
WhisperTokenizer, | |
WhisperProcessor, | |
pipeline | |
) | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
model_id = "sudoping01/whosper-large" | |
# Load model and create pipeline | |
model = WhisperForConditionalGeneration.from_pretrained( | |
model_id, | |
device_map="auto", | |
use_cache=True, | |
attention_dropout=0.1, | |
dropout=0.1, | |
token=os.environ.get("HF_TOKEN") | |
) | |
model.config.suppress_tokens = [] | |
model.config.no_repeat_ngram_size = 3 | |
model.config.early_stopping = True | |
model.config.max_length = 448 | |
model.config.num_beams = 5 | |
tokenizer = WhisperTokenizer.from_pretrained(model_id) | |
processor = WhisperProcessor.from_pretrained(model_id) | |
feature_extractor = processor.feature_extractor | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
model=model, | |
tokenizer=tokenizer, | |
feature_extractor=processor.feature_extractor, | |
torch_dtype=torch_dtype, | |
chunk_length_s=30, | |
stride_length_s=3, | |
return_timestamps=False, | |
batch_size=1 | |
) | |
def transcribe(audio): | |
if audio is None: | |
return "Please provide an audio input." | |
try: | |
result = pipe( | |
audio, | |
generate_kwargs={ | |
"temperature": 0.0, | |
"do_sample": False, | |
"num_beams": 5, | |
"length_penalty": 1.0, | |
"repetition_penalty": 1.2 | |
} | |
) | |
return result["text"] | |
except Exception as e: | |
return f"Error during transcription: {str(e)}" | |
# Create Gradio interface | |
demo = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(sources=["microphone", "upload"], type="filepath") | |
], | |
outputs=gr.Textbox(label="Transcription"), | |
title="Multilingual Speech Recognition: Wolof, French, English, .. or Mix", | |
description="Upload an audio file or record audio to transcribe Wolof, French, or English speech...", | |
theme="default" | |
) | |
if __name__ == "__main__": | |
demo.launch() |