Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import (
|
4 |
+
WhisperForConditionalGeneration,
|
5 |
+
WhisperTokenizer,
|
6 |
+
WhisperProcessor,
|
7 |
+
pipeline
|
8 |
+
)
|
9 |
+
|
10 |
+
# Initialize model and tokenizer
|
11 |
+
model_id = "sudoping01/whosper-large"
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
14 |
+
|
15 |
+
@gr.load(clean=True)
|
16 |
+
def load_model():
|
17 |
+
model = WhisperForConditionalGeneration.from_pretrained(
|
18 |
+
model_id,
|
19 |
+
device_map="auto",
|
20 |
+
use_cache=True,
|
21 |
+
attention_dropout=0.1,
|
22 |
+
dropout=0.1
|
23 |
+
)
|
24 |
+
|
25 |
+
model.config.suppress_tokens = []
|
26 |
+
model.config.no_repeat_ngram_size = 3
|
27 |
+
model.config.early_stopping = True
|
28 |
+
model.config.max_length = 448
|
29 |
+
model.config.num_beams = 5
|
30 |
+
|
31 |
+
tokenizer = WhisperTokenizer.from_pretrained(model_id)
|
32 |
+
processor = WhisperProcessor.from_pretrained(model_id)
|
33 |
+
|
34 |
+
return pipeline(
|
35 |
+
"automatic-speech-recognition",
|
36 |
+
model=model,
|
37 |
+
tokenizer=tokenizer,
|
38 |
+
feature_extractor=processor.feature_extractor,
|
39 |
+
torch_dtype=torch_dtype,
|
40 |
+
chunk_length_s=30,
|
41 |
+
stride_length_s=3,
|
42 |
+
return_timestamps=False,
|
43 |
+
batch_size=1
|
44 |
+
)
|
45 |
+
|
46 |
+
pipe = load_model()
|
47 |
+
|
48 |
+
def transcribe(audio_path):
|
49 |
+
if audio_path is None:
|
50 |
+
return "Please provide an audio input."
|
51 |
+
|
52 |
+
try:
|
53 |
+
result = pipe(
|
54 |
+
audio_path,
|
55 |
+
generate_kwargs={
|
56 |
+
"temperature": 0.0,
|
57 |
+
"do_sample": False,
|
58 |
+
"num_beams": 5,
|
59 |
+
"length_penalty": 1.0,
|
60 |
+
"repetition_penalty": 1.2
|
61 |
+
}
|
62 |
+
)
|
63 |
+
return result["text"]
|
64 |
+
except Exception as e:
|
65 |
+
return f"Error during transcription: {str(e)}"
|
66 |
+
|
67 |
+
#
|
68 |
+
css = """
|
69 |
+
.gradio-container {max-width: 800px !important}
|
70 |
+
.audio-btn {height: 40px; width: 40px;}
|
71 |
+
"""
|
72 |
+
|
73 |
+
demo = gr.Interface(
|
74 |
+
fn=transcribe,
|
75 |
+
inputs=[
|
76 |
+
gr.Audio(source="microphone", type="filepath", label="Audio Input")
|
77 |
+
],
|
78 |
+
outputs=gr.Textbox(label="Transcription"),
|
79 |
+
title="Whosper Large - Speech Recognition",
|
80 |
+
description="Upload an audio file or record audio to transcribe speech.",
|
81 |
+
article="""
|
82 |
+
This is a demo of the Whosper Large speech recognition model.
|
83 |
+
- Support for multiple languages : wolof, french, english ...
|
84 |
+
- Optimized for clarity and accuracy
|
85 |
+
- Real-time transcription capabilities
|
86 |
+
""",
|
87 |
+
examples=[],
|
88 |
+
css=css,
|
89 |
+
enable_queue=True
|
90 |
+
)
|
91 |
+
|
92 |
+
|
93 |
+
demo.launch()
|