File size: 6,850 Bytes
9c3d676
 
 
 
 
0f5897f
9c3d676
 
 
 
 
 
 
e1b0723
5b97345
0f5897f
9c3d676
 
 
e1b0723
9c3d676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f58090
 
9c3d676
 
 
 
3f58090
 
 
 
 
 
9c3d676
 
5b484f5
9c3d676
 
 
3f58090
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
import re
import logging
import textwrap
import autopep8
import gradio as gr
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
import jwt
from typing import Generator
from fastapi import FastAPI, HTTPException, Depends
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from pydantic import BaseModel
import spaces
import torch

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# JWT settings
JWT_SECRET = os.environ.get("JWT_SECRET")
if not JWT_SECRET:
    raise ValueError("JWT_SECRET environment variable is not set")
JWT_ALGORITHM = "HS256"

# Model settings
MODEL_NAME = "leetmonkey_peft__q8_0.gguf"
REPO_ID = "sugiv/leetmonkey-peft-gguf"

# Generation parameters
generation_kwargs = {
    "max_tokens": 2048,
    "stop": ["```", "### Instruction:", "### Response:"],
    "echo": False,
    "temperature": 0.2,
    "top_k": 50,
    "top_p": 0.95,
    "repeat_penalty": 1.1
}

def download_model(model_name: str) -> str:
    logger.info(f"Downloading model: {model_name}")
    model_path = hf_hub_download(
        repo_id=REPO_ID,
        filename=model_name,
        cache_dir="./models",
        force_download=True,
        resume_download=True
    )
    logger.info(f"Model downloaded: {model_path}")
    return model_path

# Download and load the 8-bit model at startup
model_path = download_model(MODEL_NAME)

@spaces.GPU
def load_model(model_path):
    return Llama(
        model_path=model_path,
        n_ctx=2048,
        n_threads=4,
        n_gpu_layers=-1,  # Use all available GPU layers
        verbose=False
    )

llm = load_model(model_path)
logger.info("8-bit model loaded successfully")

@spaces.GPU
def generate_solution(instruction: str) -> str:
    system_prompt = "You are a Python coding assistant specialized in solving LeetCode problems. Provide only the complete implementation of the given function. Ensure proper indentation and formatting. Do not include any explanations or multiple solutions."
    full_prompt = f"""### Instruction:
{system_prompt}

Implement the following function for the LeetCode problem:

{instruction}

### Response:
Here's the complete Python function implementation:

```python
"""
    
    response = llm(full_prompt, **generation_kwargs)
    return response["choices"][0]["text"]

def extract_and_format_code(text: str) -> str:
    # Extract code between triple backticks
    code_match = re.search(r'```python\s*(.*?)\s*```', text, re.DOTALL)
    if code_match:
        code = code_match.group(1)
    else:
        code = text

    # Remove any text before the function definition
    code = re.sub(r'^.*?(?=def\s+\w+\s*\()', '', code, flags=re.DOTALL)

    # Dedent the code to remove any common leading whitespace
    code = textwrap.dedent(code)

    # Split the code into lines
    lines = code.split('\n')

    # Find the function definition line
    func_def_index = next((i for i, line in enumerate(lines) if line.strip().startswith('def ')), 0)

    # Ensure proper indentation
    indented_lines = [lines[func_def_index]]  # Keep the function definition as is
    for line in lines[func_def_index + 1:]:
        if line.strip():  # If the line is not empty
            indented_lines.append('    ' + line)  # Add 4 spaces of indentation
        else:
            indented_lines.append(line)  # Keep empty lines as is

    formatted_code = '\n'.join(indented_lines)

    try:
        return autopep8.fix_code(formatted_code)
    except:
        return formatted_code

security = HTTPBearer()
app = FastAPI()

class ProblemRequest(BaseModel):
    instruction: str

def verify_token(credentials: HTTPAuthorizationCredentials = Depends(security)):
    try:
        jwt.decode(credentials.credentials, JWT_SECRET, algorithms=[JWT_ALGORITHM])
        return True
    except jwt.PyJWTError:
        raise HTTPException(status_code=401, detail="Invalid token")

@app.post("/generate_solution")
async def generate_solution_api(request: ProblemRequest, authorized: bool = Depends(verify_token)):
    logger.info("Generating solution")
    generated_output = generate_solution(request.instruction)
    formatted_code = extract_and_format_code(generated_output)
    logger.info("Solution generated successfully")
    return {"solution": formatted_code}

@app.post("/stream_solution")
async def stream_solution_api(request: ProblemRequest, authorized: bool = Depends(verify_token)):
    async def generate():
        logger.info("Streaming solution")
        system_prompt = "You are a Python coding assistant specialized in solving LeetCode problems. Provide only the complete implementation of the given function. Ensure proper indentation and formatting. Do not include any explanations or multiple solutions."
        full_prompt = f"""### Instruction:
{system_prompt}

Implement the following function for the LeetCode problem:

{request.instruction}

### Response:
Here's the complete Python function implementation:

```python
"""
        
        generated_text = ""
        for chunk in llm(full_prompt, stream=True, **generation_kwargs):
            token = chunk["choices"]["text"]
            generated_text += token
            yield token
        
        formatted_code = extract_and_format_code(generated_text)
        logger.info("Solution generated successfully")
        yield formatted_code

    return generate()

# Gradio wrapper for FastAPI
def gradio_wrapper(app):
    def inference(instruction, token):
        import requests
        url = "http://localhost:8000/generate_solution"
        headers = {"Authorization": f"Bearer {token}"}
        response = requests.post(url, json={"instruction": instruction}, headers=headers)
        if response.status_code == 200:
            return response.json()["solution"]
        else:
            return f"Error: {response.status_code}, {response.text}"

    iface = gr.Interface(
        fn=inference,
        inputs=[
            gr.Textbox(label="LeetCode Problem Instruction"),
            gr.Textbox(label="JWT Token")
        ],
        outputs=gr.Code(label="Generated Solution"),
        title="LeetCode Problem Solver API",
        description="Enter a LeetCode problem instruction and your JWT token to generate a solution."
    )
    return iface

@spaces.GPU
def main():
    # Verify GPU availability
    zero = torch.Tensor().cuda()
    print(f"GPU availability: {zero.device}")

    # Download and load the model
    model_path = download_model(MODEL_NAME)
    global llm
    llm = load_model(model_path)
    logger.info("8-bit model loaded successfully")

    # Start FastAPI in a separate thread
    Thread(target=lambda: uvicorn.run(app, host="0.0.0.0", port=8000)).start()

    # Launch Gradio interface
    iface = gradio_wrapper(app)
    iface.launch(share=True)

if __name__ == "__main__":
    main()