Spaces:
Sleeping
Sleeping
Leetmonkey In Action. Darn LeetMonkey these days
Browse files
app.py
CHANGED
@@ -4,34 +4,51 @@ from llama_cpp import Llama
|
|
4 |
import re
|
5 |
from datasets import load_dataset
|
6 |
import random
|
|
|
|
|
7 |
import autopep8
|
8 |
-
|
9 |
-
|
|
|
|
|
10 |
|
11 |
# Define the model options
|
12 |
gguf_models = {
|
|
|
13 |
"Exact Copy": "leetmonkey_peft_exact_copy.gguf",
|
14 |
"F16": "leetmonkey_peft_f16.gguf",
|
15 |
-
"Q8_0": "leetmonkey_peft__q8_0.gguf",
|
16 |
"Super Block Q6": "leetmonkey_peft_super_block_q6.gguf"
|
17 |
}
|
18 |
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
return Llama(model_path=model_path, n_ctx=2048, n_threads=4, n_gpu_layers=0, verbose=False)
|
26 |
-
|
27 |
-
# Function to preload all models
|
28 |
-
def preload_models():
|
29 |
-
for name, file in gguf_models.items():
|
30 |
-
loaded_models[name] = load_model(file)
|
31 |
-
print("All models loaded successfully!")
|
32 |
-
|
33 |
-
# Start preloading models in a separate thread
|
34 |
-
threading.Thread(target=preload_models, daemon=True).start()
|
35 |
|
36 |
# Generation parameters
|
37 |
generation_kwargs = {
|
@@ -97,20 +114,16 @@ def extract_and_format_code(text):
|
|
97 |
except:
|
98 |
return formatted_code
|
99 |
|
100 |
-
# Load the dataset
|
101 |
-
dataset = load_dataset("sugiv/leetmonkey_python_dataset")
|
102 |
-
val_dataset = dataset["train"].train_test_split(test_size=0.1)["test"]
|
103 |
-
|
104 |
def update_problem():
|
105 |
sample = random.choice(val_dataset)
|
106 |
return sample['instruction']
|
107 |
|
108 |
-
def update_solution(problem
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
return
|
114 |
|
115 |
with gr.Blocks() as demo:
|
116 |
gr.Markdown("# LeetCode Problem Solver")
|
@@ -121,11 +134,12 @@ with gr.Blocks() as demo:
|
|
121 |
select_problem_btn = gr.Button("Select Random Problem")
|
122 |
|
123 |
with gr.Column():
|
124 |
-
model_dropdown = gr.Dropdown(choices=list(gguf_models.keys()), label="Select GGUF Model", value="Exact Copy")
|
125 |
solution_display = gr.Code(label="Generated Solution", language="python", lines=25)
|
126 |
generate_btn = gr.Button("Generate Solution")
|
127 |
|
128 |
select_problem_btn.click(update_problem, outputs=problem_display)
|
129 |
-
generate_btn.click(update_solution, inputs=[problem_display
|
130 |
|
131 |
-
|
|
|
|
|
|
4 |
import re
|
5 |
from datasets import load_dataset
|
6 |
import random
|
7 |
+
import logging
|
8 |
+
import os
|
9 |
import autopep8
|
10 |
+
|
11 |
+
# Set up logging
|
12 |
+
logging.basicConfig(level=logging.INFO)
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
|
15 |
# Define the model options
|
16 |
gguf_models = {
|
17 |
+
"Q8_0": "leetmonkey_peft__q8_0.gguf",
|
18 |
"Exact Copy": "leetmonkey_peft_exact_copy.gguf",
|
19 |
"F16": "leetmonkey_peft_f16.gguf",
|
|
|
20 |
"Super Block Q6": "leetmonkey_peft_super_block_q6.gguf"
|
21 |
}
|
22 |
|
23 |
+
def download_model(model_name):
|
24 |
+
logger.info(f"Downloading model: {model_name}")
|
25 |
+
model_path = hf_hub_download(
|
26 |
+
repo_id="sugiv/leetmonkey-peft-gguf",
|
27 |
+
filename=model_name,
|
28 |
+
cache_dir="./models",
|
29 |
+
force_download=True,
|
30 |
+
resume_download=True
|
31 |
+
)
|
32 |
+
logger.info(f"Model downloaded: {model_path}")
|
33 |
+
return model_path
|
34 |
+
|
35 |
+
# Download the 8-bit model at startup
|
36 |
+
q8_model_path = download_model(gguf_models["Q8_0"])
|
37 |
+
|
38 |
+
# Load the 8-bit model
|
39 |
+
llm = Llama(
|
40 |
+
model_path=q8_model_path,
|
41 |
+
n_ctx=2048,
|
42 |
+
n_threads=4,
|
43 |
+
n_gpu_layers=0,
|
44 |
+
verbose=False
|
45 |
+
)
|
46 |
+
|
47 |
+
logger.info("8-bit model loaded successfully")
|
48 |
|
49 |
+
# Load the dataset
|
50 |
+
dataset = load_dataset("sugiv/leetmonkey_python_dataset")
|
51 |
+
val_dataset = dataset["train"].train_test_split(test_size=0.1)["test"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
# Generation parameters
|
54 |
generation_kwargs = {
|
|
|
114 |
except:
|
115 |
return formatted_code
|
116 |
|
|
|
|
|
|
|
|
|
117 |
def update_problem():
|
118 |
sample = random.choice(val_dataset)
|
119 |
return sample['instruction']
|
120 |
|
121 |
+
def update_solution(problem):
|
122 |
+
logger.info("Generating solution")
|
123 |
+
generated_output = generate_solution(problem)
|
124 |
+
formatted_code = extract_and_format_code(generated_output)
|
125 |
+
logger.info("Solution generated successfully")
|
126 |
+
return formatted_code
|
127 |
|
128 |
with gr.Blocks() as demo:
|
129 |
gr.Markdown("# LeetCode Problem Solver")
|
|
|
134 |
select_problem_btn = gr.Button("Select Random Problem")
|
135 |
|
136 |
with gr.Column():
|
|
|
137 |
solution_display = gr.Code(label="Generated Solution", language="python", lines=25)
|
138 |
generate_btn = gr.Button("Generate Solution")
|
139 |
|
140 |
select_problem_btn.click(update_problem, outputs=problem_display)
|
141 |
+
generate_btn.click(update_solution, inputs=[problem_display], outputs=solution_display)
|
142 |
|
143 |
+
if __name__ == "__main__":
|
144 |
+
logger.info("Starting Gradio interface")
|
145 |
+
demo.launch(share=True)
|