Spaces:
Sleeping
Sleeping
Leetmonkey In Action. Darn LeetMonkey these days
Browse files- app.py +117 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from llama_cpp import Llama
|
3 |
+
import re
|
4 |
+
from datasets import load_dataset
|
5 |
+
from transformers import AutoTokenizer
|
6 |
+
import autopep8
|
7 |
+
import random
|
8 |
+
import textwrap
|
9 |
+
|
10 |
+
# Load the dataset
|
11 |
+
dataset = load_dataset("sugiv/leetmonkey_python_dataset")
|
12 |
+
val_dataset = dataset["train"].train_test_split(test_size=0.1)["test"]
|
13 |
+
|
14 |
+
# Load the tokenizer
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained("sugiv/Leetmonkey-peft")
|
16 |
+
|
17 |
+
# GGUF model options
|
18 |
+
gguf_models = {
|
19 |
+
"Exact Copy": "sugiv/leetmonkey-peft-gguf/leetmonkey_peft_exact_copy.gguf",
|
20 |
+
"F16": "sugiv/leetmonkey-peft-gguf/leetmonkey_peft_f16.gguf",
|
21 |
+
"Q8_0": "sugiv/leetmonkey-peft-gguf/leetmonkey_peft__q8_0.gguf",
|
22 |
+
"Super Block Q6": "sugiv/leetmonkey-peft-gguf/leetmonkey_peft_super_block_q6.gguf"
|
23 |
+
}
|
24 |
+
|
25 |
+
generation_kwargs = {
|
26 |
+
"max_tokens": 2048,
|
27 |
+
"stop": ["```", "### Instruction:", "### Response:"],
|
28 |
+
"echo": False,
|
29 |
+
"temperature": 0.2,
|
30 |
+
"top_k": 50,
|
31 |
+
"top_p": 0.95,
|
32 |
+
"repeat_penalty": 1.1
|
33 |
+
}
|
34 |
+
|
35 |
+
def run_llama_cpp(instruction, model_path):
|
36 |
+
llm = Llama(
|
37 |
+
model_path=model_path,
|
38 |
+
n_ctx=2048,
|
39 |
+
n_threads=4,
|
40 |
+
n_gpu_layers=0,
|
41 |
+
verbose=False
|
42 |
+
)
|
43 |
+
|
44 |
+
system_prompt = "You are a Python coding assistant specialized in solving LeetCode problems. Provide only the complete implementation of the given function. Ensure proper indentation and formatting. Do not include any explanations or multiple solutions."
|
45 |
+
full_prompt = f"""<|begin▁of▁sentence|>
|
46 |
+
### Instruction:
|
47 |
+
{system_prompt}
|
48 |
+
|
49 |
+
Implement the following function for the LeetCode problem:
|
50 |
+
|
51 |
+
{instruction}
|
52 |
+
|
53 |
+
### Response:
|
54 |
+
Here's the complete Python function implementation:
|
55 |
+
|
56 |
+
```python
|
57 |
+
"""
|
58 |
+
|
59 |
+
res = llm(full_prompt, **generation_kwargs)
|
60 |
+
return res["choices"][0]["text"]
|
61 |
+
|
62 |
+
def extract_and_format_code(text):
|
63 |
+
code_match = re.search(r'```python\s*(.*?)\s*```', text, re.DOTALL)
|
64 |
+
if code_match:
|
65 |
+
code = code_match.group(1)
|
66 |
+
else:
|
67 |
+
code = text
|
68 |
+
|
69 |
+
code = re.sub(r'^.*?(?=def\s+\w+\s*\()', '', code, flags=re.DOTALL)
|
70 |
+
code = textwrap.dedent(code)
|
71 |
+
lines = code.split('\n')
|
72 |
+
func_def_index = next((i for i, line in enumerate(lines) if line.strip().startswith('def ')), 0)
|
73 |
+
indented_lines = [lines[func_def_index]]
|
74 |
+
for line in lines[func_def_index + 1:]:
|
75 |
+
if line.strip():
|
76 |
+
indented_lines.append(' ' + line)
|
77 |
+
else:
|
78 |
+
indented_lines.append(line)
|
79 |
+
|
80 |
+
formatted_code = '\n'.join(indented_lines)
|
81 |
+
|
82 |
+
try:
|
83 |
+
return autopep8.fix_code(formatted_code)
|
84 |
+
except:
|
85 |
+
return formatted_code
|
86 |
+
|
87 |
+
def select_random_problem():
|
88 |
+
sample = random.choice(val_dataset)
|
89 |
+
return sample['instruction']
|
90 |
+
|
91 |
+
def generate_solution(problem, model_name):
|
92 |
+
model_path = gguf_models[model_name]
|
93 |
+
generated_output = run_llama_cpp(problem, model_path)
|
94 |
+
formatted_code = extract_and_format_code(generated_output)
|
95 |
+
return formatted_code
|
96 |
+
|
97 |
+
def gradio_interface(problem, model_name):
|
98 |
+
solution = generate_solution(problem, model_name)
|
99 |
+
return solution
|
100 |
+
|
101 |
+
with gr.Blocks() as demo:
|
102 |
+
gr.Markdown("# LeetCode Problem Solver")
|
103 |
+
|
104 |
+
with gr.Row():
|
105 |
+
with gr.Column():
|
106 |
+
problem_display = gr.Textbox(label="LeetCode Problem", lines=10)
|
107 |
+
select_problem_btn = gr.Button("Select Random Problem")
|
108 |
+
|
109 |
+
with gr.Column():
|
110 |
+
model_dropdown = gr.Dropdown(choices=list(gguf_models.keys()), label="Select GGUF Model", value="Exact Copy")
|
111 |
+
solution_display = gr.Code(label="Generated Solution", language="python")
|
112 |
+
generate_btn = gr.Button("Generate Solution")
|
113 |
+
|
114 |
+
select_problem_btn.click(select_random_problem, outputs=problem_display)
|
115 |
+
generate_btn.click(gradio_interface, inputs=[problem_display, model_dropdown], outputs=solution_display)
|
116 |
+
|
117 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
llama-cpp-python
|
3 |
+
datasets
|
4 |
+
transformers
|
5 |
+
autopep8
|