Adding a simple monkey search for Leetcode - Darn LeetMonkey
Browse files
app.py
CHANGED
@@ -93,23 +93,11 @@ def generate_response(user_query, top_k=5):
|
|
93 |
user_prompt = f"Based on the following query, recommend relevant LeetCode problems:\n{user_query}"
|
94 |
full_prompt = f"{system_prompt}\n\n{few_shot_prompt}\n{user_prompt}\n\nRecommendations:"
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
input_ids,
|
102 |
-
attention_mask=attention_mask,
|
103 |
-
max_new_tokens=100, # Adjust as needed
|
104 |
-
do_sample=True,
|
105 |
-
top_p=0.9,
|
106 |
-
temperature=0.7,
|
107 |
-
num_return_sequences=1,
|
108 |
-
pad_token_id=tokenizer.eos_token_id
|
109 |
-
)
|
110 |
-
|
111 |
-
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
112 |
-
recommendations = response.split("Recommendations:")[1].strip()
|
113 |
return recommendations
|
114 |
|
115 |
# Create Gradio interface
|
|
|
93 |
user_prompt = f"Based on the following query, recommend relevant LeetCode problems:\n{user_query}"
|
94 |
full_prompt = f"{system_prompt}\n\n{few_shot_prompt}\n{user_prompt}\n\nRecommendations:"
|
95 |
|
96 |
+
# Generate response using Llama model
|
97 |
+
response = llm(full_prompt, max_tokens=150, temperature=0.7, top_p=0.9)
|
98 |
+
|
99 |
+
# Extract the generated recommendations
|
100 |
+
recommendations = response['choices'][0]['text'].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
return recommendations
|
102 |
|
103 |
# Create Gradio interface
|