suhaifLLM commited on
Commit
163978a
·
verified ·
1 Parent(s): 76aa8d8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +82 -50
app.py CHANGED
@@ -1,64 +1,96 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
8
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
27
 
28
- response = ""
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
41
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
62
 
63
- if __name__ == "__main__":
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  demo.launch()
 
 
 
 
1
  import gradio as gr
2
+ from unsloth import FastLanguageModel
3
+ import torch
4
 
5
+ # Load the pre-trained language model and tokenizer
6
+ model_name = "suhaif/unsloth-llama-3-8b-4bit"
7
+ max_seq_length = 2048
8
+ dtype = None
9
+ load_in_4bit = True
10
 
11
+ model, tokenizer = FastLanguageModel.from_pretrained(
12
+ model_name=model_name,
13
+ max_seq_length=max_seq_length,
14
+ dtype=dtype,
15
+ load_in_4bit=load_in_4bit
16
+ )
17
 
18
+ # Default instruction for generating the story
19
+ default_instruction = "You are a creative writer. Based on the given input, generate a well-structured story with an engaging plot, well-developed characters, and immersive details. Ensure the story has a clear beginning, middle, and end. Include dialogue and descriptions to bring the story to life. You can add twist to the story also"
 
 
 
 
 
 
 
20
 
21
+ # Function to format the prompt
22
+ def format_prompt(input_text, instruction=default_instruction):
23
+ return f"{instruction}\n\nInput:\n{input_text}\n\nResponse:\n"
 
 
24
 
25
+ # Function to generate story from the model
26
+ def generate_story(user_input):
27
+ # Format the input
28
+ prompt = format_prompt(user_input)
29
+ inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
30
 
31
+ # Generate output from the model
32
+ outputs = model.generate(**inputs, max_new_tokens=500, use_cache=True)
33
+
34
+ # Decode and return the result
35
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
36
 
37
+ # Feedback mechanism (collects and stores feedback)
38
+ feedback_data = []
 
 
 
 
 
 
39
 
40
+ def submit_feedback(rating, feedback_text, story):
41
+ feedback_data.append({
42
+ "rating": rating,
43
+ "feedback_text": feedback_text,
44
+ "story": story
45
+ })
46
+ return "Thank you for your feedback!"
47
 
48
+ # Community engagement feature - to upload and share stories
49
+ shared_stories = []
50
 
51
+ def share_story(title, story_text):
52
+ shared_stories.append({"title": title, "story_text": story_text})
53
+ return f"Story '{title}' has been shared successfully!"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
 
55
+ def display_stories():
56
+ return [(story['title'], story['story_text']) for story in shared_stories]
57
 
58
+ # Gradio interface
59
+ def storytelling_interface():
60
+ # User inputs
61
+ with gr.Blocks() as demo:
62
+ gr.Markdown("# Interactive Storytelling Assistant")
63
+
64
+ with gr.Row():
65
+ with gr.Column():
66
+ user_input = gr.Textbox(label="Enter your story prompt", placeholder="A young adventurer embarks on a journey to find a lost treasure...", lines=4)
67
+ generate_button = gr.Button("Generate Story")
68
+
69
+ story_output = gr.Textbox(label="Generated Story", placeholder="Generated story will appear here...", lines=10, interactive=False)
70
+
71
+ generate_button.click(fn=generate_story, inputs=user_input, outputs=story_output)
72
+
73
+ with gr.Column():
74
+ gr.Markdown("## Provide Feedback")
75
+ rating = gr.Slider(1, 5, step=1, label="Rate the story")
76
+ feedback_text = gr.Textbox(label="Feedback", placeholder="Provide any suggestions or comments...", lines=3)
77
+ submit_feedback_button = gr.Button("Submit Feedback")
78
+ submit_feedback_button.click(fn=submit_feedback, inputs=[rating, feedback_text, story_output], outputs=None)
79
+
80
+ with gr.Row():
81
+ gr.Markdown("## Share your Story")
82
+ title = gr.Textbox(label="Story Title", placeholder="Enter the title of your story")
83
+ story_text = gr.Textbox(label="Your Story", placeholder="Enter your full story here...", lines=8)
84
+ share_button = gr.Button("Share Story")
85
+ share_button.click(fn=share_story, inputs=[title, story_text], outputs=None)
86
+
87
+ with gr.Row():
88
+ gr.Markdown("## Browse Shared Stories")
89
+ stories_list = gr.Dropdown(display_stories, label="Select a story to read")
90
+ story_display = gr.Textbox(label="Story Content", lines=10, interactive=False)
91
+ stories_list.change(fn=lambda title: next(story['story_text'] for story in shared_stories if story['title'] == title), inputs=stories_list, outputs=story_display)
92
+
93
  demo.launch()
94
+
95
+ # Start the storytelling interface
96
+ storytelling_interface()