Spaces:
Sleeping
Sleeping
File size: 14,014 Bytes
162f3ee 9603aa4 162f3ee 80a67e8 162f3ee 725d75b a956c77 162f3ee 61ae9bd 162f3ee 7c6e8cc 162f3ee 7c6e8cc 162f3ee 7c6e8cc 162f3ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import streamlit as st
import json
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.document_loaders import JSONLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import pandas as pd
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import SentenceTransformerEmbeddings
import os
import cohere
from dotenv import load_dotenv
load_dotenv()
api_key = os.getenv('API_KEY')
client = cohere.Client(api_key)
# Define functions
def split_docs(documents, chunk_size=1000, chunk_overlap=20):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
docs = text_splitter.split_documents(documents)
return docs
def make_api_call(gpt_assistant_prompt, gpt_user_prompt):
message = f"{gpt_assistant_prompt}\n\n{gpt_user_prompt}"
temperature = 0.0
max_tokens = 1000
#frequency_penalty = 0.0
response = client.chat(
model="command",
message=message,
temperature=temperature,
max_tokens=max_tokens,
)
return response.text
def condition_split(query):
structure = {
"condition_for_eligibility": {
"logic": "form the logic from query above like (A and B) or C",
"definitions": {
"condition": "the text Condition extracted from the query"
}
},
"promotion_offered": "Description of Promotion",
"scheduling": "Offer Scheduling Details"
}
template_initial = f"""
Given a text description of a customer offer that outlines eligibility criteria, the promotion offered, and the scheduling of the offer, your task is to parse the text and organize the information into a structured JSON format. The JSON structure should include three main components: condition_for_eligibility, promotion_offered, and scheduling. Use logical expressions to detail the conditions for eligibility.
Text Description:
{query}
Your Objectives:
Extract and Label Conditions for Eligibility:
Identify specific metrics or actions (e.g., number of calls) that define eligibility.
Use labels (A, B, C) for distinct conditions.
Determine the logical relationship between these conditions (e.g., (A and B) or C).
Outline the Promotion Offered:
Identify the key benefit or discount promised to eligible customers.
Determine the Scheduling for the Offer:
Capture the frequency or timing of when the offer is made (e.g., daily, weekly).
Structure Your Response as Follows:
the structure is
{structure}
the json you produce, replace the sigle quates with doublequates to match json format the json.loads is expecting
"""
gpt_assistant_prompt = """You are an expert in Semantic Understanding, Marketing, and Business Analysis.
You need to extract specific information like conditions, scheduling details, and promotions from a paragraph, typically blending technical skills and domain-specific knowledge.
Give only the JSON as the response.
"""
gpt_user_prompt = template_initial
resp = make_api_call(gpt_assistant_prompt, gpt_user_prompt)
start_index = resp.find("{")
end_index = resp.rfind("}")
resp = resp.replace("'", '"')
print(resp)
json_data_string = resp[start_index:end_index + 1]
json_data = json.loads(json_data_string)
return json_data
def make_prompt(query, db1):
matching_docs = db1.similarity_search(query, k=4)
li = []
for doc in matching_docs:
js = json.loads(doc.page_content)
s = f"{js['kpis']}: {js['description']}"
li.append(s)
final = ",/n ".join(li)
prompt_template = f"""
Given the following user query and matched information if the KPI's:
User Query: {query}
Matched KPI's:
{final}
Write a condition to fulfill the user query.
IMPORTANT:
- Use only the KPI's mentioned in the Matched KPI's.
- Associate KPI's with the corresponding descriptions provided in the Matched KPI's.
- provide only the condition in response
- only the exact KPI and condition value is to be present in the response no other text should be present.
- only use one matching KPI or the closer once
"""
gpt_assistant_prompt = """You are an expert in Semantic Understanding, Marketing, and Business Analysis.
You need to check whether the text matches. If the matching probability is high, then proceed with the requirement.
"""
resp = make_api_call(gpt_assistant_prompt, prompt_template)
return str(resp)
def replace_with_shielding(json_data, condition_string):
placeholders = {key: f"__{key}__" for key in json_data.keys()}
for key, placeholder in placeholders.items():
condition_string = condition_string.replace(key, placeholder)
stop_processing = False
for key, value in json_data.items():
if stop_processing:
break
if "The provided KPI's do not match the user query." in str(value):
stop_processing = True
condition_string = condition_string.replace(placeholders[key], "Description not matching with kpi so update kpi and description in kpi's json file")
else:
condition_string = condition_string.replace(placeholders[key], str(value))
if "Description not matching with kpi so update kpi and description in kpi's json file" in condition_string:
stop_index = condition_string.index("Description not matching with kpi so update kpi and description in kpi's json file")
condition_string = condition_string[:stop_index] + "Description not matching with kpi so update kpi and description in kpi's json file"
return condition_string
def form_json_rule(condition_string):
final_template = """
The task is to generate a json format with the help of english text.
I will help you with some details about the conversion.
a sample rule json structure is
{"featureId":"","appName":"","username":"","password":"","reqTxnId":"","msgOrigin":"","msgDest":"","timestamp":"","id":"","ruletype":"","data":{"detail":{"rules":{"id":"0","pid":"#","childrens":[{"id":"0_0","pid":"0","type":"conditions","option":"All","childrens":[{"id":"0_0_0","pid":"0_0","type":"condition","profile":{"id":1,"name":"P_AON"},"operator":">","values":{"value":"30"}},{"id":"0_0_1","pid":"0_0","type":"condition","profile":{"id":862,"name":"P_DEVICE_TYPE"},"operator":"=","values":{"value":"PHONE"}},{"id":"0_0_2","pid":"0_0","type":"action","action":{"id":98,"name":"Mobile App Notification"},"field":[{"name":"ActionID","value":"0_0_2"},{"name":"ActionName","value":""},{"name":"ActionCall","value":""}],"request":{"field":[]}}]}]}}}}
Root Level Properties
featureId: String. A unique identifier for the feature.
appName: String. The name of the application.
username: String. The username for authentication.
password: String. The password for authentication.
reqTxnId: String. A unique transaction identifier.
msgOrigin: String. The origin of the message.
msgDest: String. The destination of the message.
timestamp: String (ISO 8601 format). The timestamp of the request or action.
id: String. A unique identifier for this particular instance.
ruletype: String. The type of rule being defined.
Data and Detail Section
data: Object container.
detail: Object within 'data'.
rules: Object representing the rule logic.
id: String. The unique identifier of the rule.
pid: String. The parent identifier of the rule.
childrens: Array of child objects. Each object represents a condition or an action.
type: String. Specifies if it's a 'condition' or 'action'
if inside childrens if type is condition then the option can come as a logical operator like 'All' or 'Any'.
ALL is like an and operation where as Any is like an OR operation
If type is 'any' or 'and', it contains a conditions array with condition objects.
If type is 'condition' or 'action', it follows the respective structures below.
Condition Structure
id: String. The unique identifier of the condition.
pid: String. The parent identifier of the condition.
profile: Object containing details of the condition.
name: String. The name of the condition.
id: String. The unique identifier of the condition.
operator: String. The operation applied in the condition (e.g., '=', '<>').
values: String. The values to check against in the condition.
isTextMode: Boolean. Indicates text mode evaluation.
Action Structure
id: String. The unique identifier of the action.
pid: String. The parent identifier of the action.
action: Object containing details of the action.
name: String. The name of the action.
id: String. The unique identifier of the action.
field: Object of parameters related to the action (key-value pairs).
request (Optional): Object detailing an external service request (key-value pairs).
isTextMode: Boolean. Indicates text mode processing.
Schedule Section
schedule: Object defining scheduling details.
field: Array of scheduling parameter objects.
Each object contains scheduling details (key-value pairs) like ScheduleName, ScheduleType, CAMPAIGN_NAME, ExpiryDate.
now from the information provided below convert it to json
shielded_replaced_string
"""
final_template = final_template.replace("shielded_replaced_string", condition_string)
gpt_assistant_prompt2 = """You are a json rule maker. You make rules based on the structure provided.
IMPORTANT:
Only give the valid json as response no other text should be present.
Give the response json in compact form.
the response should be exactly same to the template used in the prompt
"""
resp = make_api_call(gpt_assistant_prompt2, final_template)
return resp
# Streamlit App
def main():
st.title("Flight Data Analysis")
uploaded_file = st.file_uploader("Choose a JSON file", type="jsnol")
if uploaded_file is not None:
with open("flight.jsnol", "wb") as f:
f.write(uploaded_file.getvalue())
documents = JSONLoader(file_path='flight.jsnol', jq_schema='.', text_content=False, json_lines=True).load()
query = st.text_input("Enter your query")
if st.button("Split Documents"):
docs = split_docs(documents)
st.write(f"Number of documents: {len(docs)}")
st.json(docs)
if st.button("Create Embeddings and Vector Store"):
docs = split_docs(documents)
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
db1 = Chroma.from_documents(
documents=docs,
embedding=embeddings,
persist_directory="embeddings"
)
db1.persist()
st.write("Embeddings and vector store created.")
if st.button("Condition Split"):
if query:
json_data = condition_split(query)
st.write("JSON Data:")
st.json(json_data)
else:
st.write("Please enter a query.")
if st.button("Make Prompt"):
if query:
docs = split_docs(documents)
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
db1 = Chroma.from_documents(
documents=docs,
embedding=embeddings,
persist_directory="embeddings"
)
db1.persist()
condition_string = make_prompt(query, db1)
st.write("Condition String:")
st.write(condition_string)
else:
st.write("Please enter a query.")
if st.button("Replace with Shielding"):
if query:
docs = split_docs(documents)
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
db1 = Chroma.from_documents(
documents=docs,
embedding=embeddings,
persist_directory="embeddings"
)
db1.persist()
condition_string = make_prompt(query, db1)
json_data = condition_split(query)
shielded_replaced_string = replace_with_shielding(json_data, condition_string)
st.write("Shielded Replaced String:")
st.write(shielded_replaced_string)
else:
st.write("Please enter a query.")
if st.button("Form JSON Rule"):
if query:
docs = split_docs(documents)
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
db1 = Chroma.from_documents(
documents=docs,
embedding=embeddings,
persist_directory="embeddings"
)
db1.persist()
condition_string = make_prompt(query, db1)
json_data = condition_split(query)
shielded_replaced_string = replace_with_shielding(json_data, condition_string)
json_rule = form_json_rule(shielded_replaced_string)
st.write("JSON Rule:")
st.json(json_rule)
st.download_button(
label="Download JSON Rule",
data=json.dumps(json_rule),
file_name="json_rule.json",
mime="application/json"
)
else:
st.write("Please enter a query.")
if __name__ == '__main__':
main()
|