Phuong Anh commited on
Commit
37d4cf3
1 Parent(s): 89a1fb5

Initial commit with model and app

Browse files
Files changed (1) hide show
  1. app.py +40 -0
app.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import cv2
3
+ import numpy as np
4
+ from anomalib.deploy import OpenVINOInferencer
5
+ from huggingface_hub import hf_hub_download
6
+
7
+ # Load the model
8
+ model_path = hf_hub_download(repo_id="suidinpa/bottle-anomaly-detection", filename="model.bin")
9
+ metadata_path = hf_hub_download(repo_id="suidinpa/bottle-anomaly-detection", filename="metadata.json")
10
+
11
+ # Initialize OpenVINO inferencer
12
+ inferencer = OpenVINOInferencer(
13
+ path=model_path,
14
+ metadata=metadata_path,
15
+ device="CPU",
16
+ task="classification"
17
+ )
18
+
19
+ def predict(image):
20
+ """Function to process the image and predict with the model"""
21
+ # Convert image to a format suitable for the model
22
+ img_array = np.array(image)
23
+ img_bgr = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
24
+
25
+ # Predict anomaly
26
+ predictions = inferencer.predict(img_bgr)
27
+
28
+ # Return results
29
+ return predictions.pred_label, predictions.pred_score
30
+
31
+ # Define the Gradio interface
32
+ interface = gr.Interface(
33
+ fn=predict, # The prediction function
34
+ inputs=gr.Image(type="numpy", label="Upload Image"), # Image input from the user
35
+ outputs=["text", "number"], # Text (for label) and number (for prediction score)
36
+ live=True # Make the app live for real-time predictions
37
+ )
38
+
39
+ # Launch the app
40
+ interface.launch()