Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
|
4 |
+
# Load LLAMA model and tokenizer
|
5 |
+
model_name = "sujra/insurance_Model"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
8 |
+
|
9 |
+
# Define function for generating text
|
10 |
+
#
|
11 |
+
def generate_text(prompt):
|
12 |
+
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
|
13 |
+
result = pipe(f"<s>[INST] {prompt} [/INST]")
|
14 |
+
generated_text = result[0]['generated_text']
|
15 |
+
return generated_text
|
16 |
+
|
17 |
+
st.title("Insurance Response Generation")
|
18 |
+
|
19 |
+
prompt_input = st.text_input("Enter your prompt:")
|
20 |
+
|
21 |
+
if st.button("Generate Response"):
|
22 |
+
if prompt_input:
|
23 |
+
with st.spinner("Generating response..."): # Display a spinner while generating response
|
24 |
+
response = generate_text(prompt_input)
|
25 |
+
st.write("Generated Response:")
|
26 |
+
st.write(response)
|
27 |
+
else:
|
28 |
+
st.write("Please enter a prompt.")
|