Spaces:
Sleeping
Sleeping
File size: 16,707 Bytes
570952a 92707e3 570952a 92707e3 570952a 6329f74 570952a 996bf1f 570952a 996bf1f 570952a a1793e4 570952a 7262aba 996bf1f 570952a 996bf1f 570952a 996bf1f 570952a 996bf1f 570952a 996bf1f 570952a 996bf1f 570952a 92707e3 570952a 92707e3 570952a 996bf1f 570952a 6329f74 996bf1f 6329f74 996bf1f 6329f74 996bf1f 570952a 6329f74 570952a 996bf1f 570952a 6329f74 570952a 92707e3 570952a 92707e3 570952a 92707e3 570952a 996bf1f 570952a 92707e3 f361f6e 92707e3 570952a 92707e3 570952a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
{
"cells": [
{
"cell_type": "markdown",
"id": "3bae1d7d-a2be-444d-97cc-d1cbf8843bf1",
"metadata": {},
"source": [
"# Invisible RAG Pilot Demo App"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2a8e18f7-cc88-4bbf-a6e1-095237ed7714",
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import gspread\n",
"import gradio as gr\n",
"\n",
"\n",
"class RAGInterface:\n",
" \"\"\"\n",
" Setup the gradio app for loading/saving/syncronizing the mockup A/B evaluation RAG tasks.\n",
" The app is deployed on Hugging Face spaces at https://huggingface.co/spaces/sukiboo/invisible-rag-demo\n",
" \"\"\"\n",
"\n",
" def __init__(self):\n",
" self.setup_interface()\n",
" self.launch_interface()\n",
"\n",
" def setup_interface(self):\n",
" \"\"\"Configure the A/B Evaluation RAG task interface.\"\"\"\n",
" with gr.Blocks(title='Demo AB Evaluate RAG') as self.interface:\n",
"\n",
" # protected fields\n",
" _task_id = gr.Textbox(label='Task ID', interactive=False, visible=False)\n",
"\n",
" # task id and load/save/reset buttons\n",
" with gr.Row():\n",
" task_id = gr.Textbox(container=False, placeholder='Enter a task ID: 1--11', scale=9)\n",
" load_button = gr.Button('Load Task', scale=1)\n",
" save_button = gr.Button('Save Task', scale=1, variant='primary')\n",
" reset_button = gr.Button('Reset Task', scale=1, variant='stop')\n",
"\n",
" # chat history and search results\n",
" chat = gr.Chatbot(height=700, layout='bubble', bubble_full_width=False, label='Chat History')\n",
" sources = gr.Markdown()\n",
"\n",
" # model completions for answers 1 and 2\n",
" with gr.Row():\n",
" with gr.Column():\n",
" answer1 = gr.Textbox(label='Answer 1', max_lines=50)\n",
" with gr.Column():\n",
" answer2 = gr.Textbox(label='Answer 2', max_lines=50)\n",
"\n",
" # individual ratings for answers 1 and 2\n",
" with gr.Row():\n",
" with gr.Column():\n",
" groundedness1 = gr.Radio(label='Groundedness', choices=['Bad', 'Good', 'Perfect'])\n",
" fluency1 = gr.Radio(label='Fluency', choices=['Bad', 'Good', 'Perfect'])\n",
" utility1 = gr.Radio(label='Utility', choices=['Catastrophic', 'Bad', 'Good', 'Perfect'])\n",
" notes1 = gr.Textbox(label='Notes', placeholder='N/A')\n",
" with gr.Column():\n",
" groundedness2 = gr.Radio(label='Groundedness', choices=['Bad', 'Good', 'Perfect'])\n",
" fluency2 = gr.Radio(label='Fluency', choices=['Bad', 'Good', 'Perfect'])\n",
" utility2 = gr.Radio(label='Utility', choices=['Catastrophic', 'Bad', 'Good', 'Perfect'])\n",
" notes2 = gr.Textbox(label='Notes', placeholder='N/A')\n",
"\n",
" # overall rating\n",
" overall = gr.Radio(label='Overall Rating', choices=['#1 Better', 'Equally Bad', 'Equally Good', '#2 Better'])\n",
" notes = gr.Textbox(label='Notes', placeholder='A brief justification for the overall rating')\n",
"\n",
" # input/output fields\n",
" answers = (answer1, answer2)\n",
" ratings1 = (groundedness1, fluency1, utility1, notes1)\n",
" ratings2 = (groundedness2, fluency2, utility2, notes2)\n",
" ratings = (*ratings1, *ratings2, overall, notes)\n",
"\n",
" # button clicks\n",
" load_button.click(self.load_task, inputs=[task_id], outputs=[_task_id, chat, sources, *answers, *ratings])\n",
" save_button.click(self.save_task, inputs=[_task_id, *ratings], outputs=None)\n",
" reset_button.click(self.reset_task, inputs=[_task_id], outputs=[*ratings])\n",
"\n",
" def load_task(self, task_id):\n",
" \"\"\"Load the task and parse the info.\"\"\"\n",
" task = self.read_task(task_id)\n",
" try:\n",
" id = task['id']\n",
" chat = task['chat_history'] + [[task['question'], task['search_query']]]\n",
" answers = [task['answer_1'], task['answer_2']]\n",
" sources = self.load_sources(task)\n",
" ratings = self.load_ratings(task)\n",
" gr.Info(f'Task demo_task_{task_id} is loaded!')\n",
" return id, chat, sources, *answers, *ratings\n",
" except:\n",
" raise gr.Error(f'Could not load the task demo_task_{task_id} :(')\n",
"\n",
" def read_task(self, task_id):\n",
" \"\"\"Read the json task file.\"\"\"\n",
" try:\n",
" with open(f'./data/demo_task_{task_id}.json') as task_file:\n",
" task = json.load(task_file)\n",
" return task\n",
" except FileNotFoundError:\n",
" raise gr.Error(f'Task demo_task_{task_id} is not found :(')\n",
"\n",
" def load_sources(self, task):\n",
" \"\"\"Parse the search results.\"\"\"\n",
" sources = []\n",
" for idx, source in enumerate(task['search_results']):\n",
" sources.append(f'##### {idx+1}. {source.replace(\"<\", f\"{chr(92)}<\")}\\n')\n",
" return '\\n---\\n'.join(['## Search Results'] + sources + ['']) if sources else ''\n",
"\n",
" def load_ratings(self, task):\n",
" \"\"\"Parse the ratings for each answer.\"\"\"\n",
" # load ratings for answer 1\n",
" ratings1 = (task['ratings_1']['groundedness'],\n",
" task['ratings_1']['fluency'],\n",
" task['ratings_1']['utility'],\n",
" task['ratings_1']['notes'])\n",
" # load ratings for answer 2\n",
" ratings2 = (task['ratings_2']['groundedness'],\n",
" task['ratings_2']['fluency'],\n",
" task['ratings_2']['utility'],\n",
" task['ratings_2']['notes'])\n",
" # load overall ratings\n",
" overall = task['overall']\n",
" notes = task['notes']\n",
" return (*ratings1, *ratings2, overall, notes)\n",
"\n",
" def save_task(self, task_id, *ratings):\n",
" \"\"\"Save the task into a new json file.\"\"\"\n",
" # load the original task\n",
" with open(f'./data/demo_task_{task_id}.json') as task_file:\n",
" task = json.load(task_file)\n",
" # parse the ratings\n",
" groundedness1, fluency1, utility1, notes1, \\\n",
" groundedness2, fluency2, utility2, notes2, \\\n",
" overall, notes = ratings\n",
" # update the ratings for answer 1\n",
" task['ratings_1']['groundedness'] = groundedness1\n",
" task['ratings_1']['fluency'] = fluency1\n",
" task['ratings_1']['utility'] = utility1\n",
" task['ratings_1']['notes'] = notes1\n",
" # update the ratings for answer 2\n",
" task['ratings_2']['groundedness'] = groundedness2\n",
" task['ratings_2']['fluency'] = fluency2\n",
" task['ratings_2']['utility'] = utility2\n",
" task['ratings_2']['notes'] = notes2\n",
" # update overall ratings\n",
" task['overall'] = overall\n",
" task['notes'] = notes\n",
" try:\n",
" # save the task to json file\n",
" with open(f'./data/demo_task_{task_id}.json', 'w', encoding='utf-8') as task_file:\n",
" json.dump(task, task_file, ensure_ascii=False, indent=4)\n",
" # save the task to google spreadsheet\n",
" self.save_gsheet(task_id, ratings)\n",
" gr.Info(f'Task demo_task_{task_id} is saved!')\n",
" except:\n",
" raise gr.Error(f'Could not save the task demo_task_{task_id} :(')\n",
"\n",
" def reset_task(self, task_id):\n",
" \"\"\"Reset the task by erasing the ratings and operator notes.\"\"\"\n",
" # load the original task\n",
" with open(f'./data/demo_task_{task_id}.json') as task_file:\n",
" task = json.load(task_file)\n",
" # erase the ratings for answer 1\n",
" task['ratings_1']['groundedness'] = ''\n",
" task['ratings_1']['fluency'] = ''\n",
" task['ratings_1']['utility'] = ''\n",
" task['ratings_1']['notes'] = ''\n",
" # erase the ratings for answer 2\n",
" task['ratings_2']['groundedness'] = ''\n",
" task['ratings_2']['fluency'] = ''\n",
" task['ratings_2']['utility'] = ''\n",
" task['ratings_2']['notes'] = ''\n",
" # erase overall ratings\n",
" task['overall'] = ''\n",
" task['notes'] = ''\n",
" try:\n",
" # save the reset task to json file\n",
" with open(f'./data/demo_task_{task_id}.json', 'w', encoding='utf-8') as task_file:\n",
" json.dump(task, task_file, ensure_ascii=False, indent=4)\n",
" # save the reset task to google spreadsheet\n",
" self.reset_gsheet(task_id)\n",
" gr.Info(f'Task demo_task_{task_id} is reset!')\n",
" except:\n",
" raise gr.Error(f'Could not reset the task demo_task_{task_id} :(')\n",
" return '', '', '', '', '', '', '', '', '', ''\n",
"\n",
" def save_gsheet(self, id, ratings):\n",
" \"\"\"Save the task to google spreadsheet.\"\"\"\n",
" # parse the ratings\n",
" groundedness1, fluency1, utility1, notes1, \\\n",
" groundedness2, fluency2, utility2, notes2, \\\n",
" overall, notes = ratings\n",
" try:\n",
" # configure gsheet credentials\n",
" gc = gspread.service_account('./gsheet_service_account.json')\n",
" sheet_id = '1D2sfE9YXKtd7cKlgalo5UnuNKC-GhxlGqHVYUlkQlCY'\n",
" sh = gc.open_by_key(sheet_id).worksheet('demo-app')\n",
" # update task ratings in the worksheet\n",
" sh.update(range_name=f'C{3+int(id)}:J{3+int(id)}',\n",
" values=[[groundedness1, fluency1, utility1, groundedness2, fluency2, utility2, overall, notes]])\n",
" except:\n",
" gr.Warning(f'Could not save the task demo_task_{task_id} to the spreadsheet :(')\n",
"\n",
" def reset_gsheet(self, id):\n",
" \"\"\"Reset the task ratings in google spreadsheet.\"\"\"\n",
" try:\n",
" # configure gsheet credentials\n",
" gc = gspread.service_account('./gsheet_service_account.json')\n",
" sheet_id = '1D2sfE9YXKtd7cKlgalo5UnuNKC-GhxlGqHVYUlkQlCY'\n",
" sh = gc.open_by_key(sheet_id).worksheet('demo-app')\n",
" # update task ratings in the worksheet\n",
" sh.batch_clear([f'C{3+int(id)}:J{3+int(id)}'])\n",
" except:\n",
" gr.Warning(f'Could not reset the task demo_task_{task_id} in the spreadsheet :(')\n",
"\n",
" def launch_interface(self):\n",
" \"\"\"Launch the A/B Evaluation RAG task interface.\"\"\"\n",
" gr.close_all()\n",
" self.interface.queue(default_concurrency_limit=None)\n",
" self.interface.launch()\n",
"\n",
"\n",
"rag = RAGInterface()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ade1097d-35ce-4f7a-a689-1b51973cbc70",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "6707866e-8f1b-4bda-9b12-0008e289ab77",
"metadata": {},
"outputs": [],
"source": [
"# create placeholder tasks\n",
"import os\n",
"import json\n",
"\n",
"os.makedirs('./data/', exist_ok=True)\n",
"for idx in range(1):\n",
" task = {\n",
" 'id': f'{idx}',\n",
" 'chat_history': [['user message 1', 'bot message 1'], ['user message 2', 'bot message 2']],\n",
" 'question': 'question',\n",
" 'search_query': 'search query',\n",
" 'search_results': ['source 1', 'source 2', 'source 3'],\n",
" 'answer_1': 'answer 1',\n",
" 'answer_2': 'answer 2',\n",
" 'ratings_1': {'groundedness': '', 'utility': '', 'fluency': '', 'notes': ''},\n",
" 'ratings_2': {'groundedness': '', 'utility': '', 'fluency': '', 'notes': ''},\n",
" 'overall': '',\n",
" 'notes': ''\n",
" }\n",
" with open(f'./data/demo_task_{idx}.json', 'w', encoding='utf-8') as task_file:\n",
" json.dump(task, task_file, ensure_ascii=False, indent=4)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e99c2d79-d544-4d30-ab22-6452385d3593",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "98f44682-2088-4925-8e2a-563197a50b66",
"metadata": {},
"outputs": [],
"source": [
"# make demo tasks from the csv of the spreadsheet\n",
"# https://docs.google.com/spreadsheets/d/1kYW0cABv2C-mMmmw2Uc50mQC0MmOuoqKJQaBp7IyCho/edit#gid=1934745276\n",
"import os\n",
"import json\n",
"import pandas as pd\n",
"\n",
"df = pd.read_csv('./dev.csv')\n",
"df\n",
"\n",
"os.makedirs('./data/', exist_ok=True)\n",
"for idx in range(len(df)):\n",
" row = df.iloc[idx]\n",
" task = {\n",
" 'id': f'{idx+1}',\n",
" 'chat_history': [],\n",
" 'question': f'{row[\"question\"]}',\n",
" 'search_query': '',\n",
" 'search_results': [],\n",
" 'answer_1': f'{row[\"answer_1\"]}',\n",
" 'answer_2': f'{row[\"answer_2\"]}',\n",
" 'ratings_1': {'groundedness': '', 'utility': '', 'fluency': '', 'notes': ''},\n",
" 'ratings_2': {'groundedness': '', 'utility': '', 'fluency': '', 'notes': ''},\n",
" 'overall': '',\n",
" 'notes': ''\n",
" }\n",
"\n",
" # chat history\n",
" try:\n",
" i = 1\n",
" while not pd.isna(row[f'user message {i}']):\n",
" task['chat_history'].append([row[f'user message {i}'], row[f'bot message {i}']])\n",
" i += 1\n",
" except:\n",
" pass\n",
"\n",
" # search query\n",
" if not pd.isna(row['search_2']):\n",
" task['search_query'] = f'{row[\"search_1\"]}\\n{row[\"search_2\"]}'\n",
" else:\n",
" task['search_query'] = f'{row[\"search_1\"]}'\n",
"\n",
" # search results\n",
" try:\n",
" i = 1\n",
" while not pd.isna(row[f'source {i}']):\n",
" task['search_results'].append(row[f'source {i}'])\n",
" i += 1\n",
" except:\n",
" pass\n",
"\n",
" # save the task\n",
" with open(f'./data/demo_task_{idx+1}.json', 'w', encoding='utf-8') as task_file:\n",
" json.dump(task, task_file, ensure_ascii=False, indent=4)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d293fcca-659d-41c5-b043-15fd2e57b216",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "9ab3763f-fa7b-406b-9bc4-22bc4f7a4ea3",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "d5023979-626b-4135-8805-3de1a846586e",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|