import gradio as gr import numpy as np import json import os from PIL import Image import onnxruntime as rt class ONNXModel: def __init__(self, dir_path) -> None: """Load model metadata and initialize ONNX session.""" model_dir = os.path.dirname(dir_path) with open(os.path.join(model_dir, "signature.json"), "r") as f: self.signature = json.load(f) self.model_file = os.path.join(model_dir, self.signature.get("filename")) if not os.path.isfile(self.model_file): raise FileNotFoundError("Model file does not exist.") self.signature_inputs = self.signature.get("inputs") self.signature_outputs = self.signature.get("outputs") if "Image" not in self.signature_inputs: raise ValueError("ONNX model must have an 'Image' input. Check signature.json.") # Check export version version = self.signature.get("export_model_version") if version is None or version != EXPORT_MODEL_VERSION: print(f"Warning: Expected model version {EXPORT_MODEL_VERSION}, but found {version}.") self.session = None def load(self) -> None: """Load the ONNX model with execution providers.""" self.session = rt.InferenceSession(self.model_file, providers=["CPUExecutionProvider"]) def predict(self, image: Image.Image) -> dict: """Process image and run ONNX model inference.""" img = self.process_image(image, self.signature_inputs["Image"]["shape"]) feed = {self.signature_inputs["Image"]["name"]: [img]} output_names = [self.signature_outputs[key]["name"] for key in self.signature_outputs] outputs = self.session.run(output_names=output_names, input_feed=feed) return self.process_output(outputs) def process_image(self, image: Image.Image, input_shape: list) -> np.ndarray: """Resize and normalize the image.""" width, height = image.size if image.mode != "RGB": image = image.convert("RGB") square_size = min(width, height) left = (width - square_size) / 2 top = (height - square_size) / 2 right = (width + square_size) / 2 bottom = (height + square_size) / 2 image = image.crop((left, top, right, bottom)) input_width, input_height = input_shape[1:3] image = image.resize((input_width, input_height)) image = np.asarray(image) / 255.0 return image.astype(np.float32) def process_output(self, outputs: list) -> dict: """Format the model output.""" out_keys = ["label", "confidence"] results = {key: outputs[i].tolist()[0] for i, key in enumerate(self.signature_outputs)} confs = results["Confidences"] labels = self.signature["classes"]["Label"] output = [dict(zip(out_keys, group)) for group in zip(labels, confs)] return {"predictions": sorted(output, key=lambda x: x["confidence"], reverse=True)} EXPORT_MODEL_VERSION = 1 model = ONNXModel(dir_path="model.onnx") model.load() def predict(image): """Run inference on the given image.""" image = Image.fromarray(np.uint8(image), "RGB") prediction = model.predict(image) for output in prediction["predictions"]: output["confidence"] = round(output["confidence"], 4) return prediction inputs = gr.Image(image_mode="RGB") outputs = gr.JSON() description = ( "This is a web interface for the Naked Detector model. " "Upload an image and get predictions for the presence of nudity.\n" "Model and website created by KUO SUKO, C110156115 NKUST." ) interface = gr.Interface( fn=predict, inputs=inputs, outputs=outputs, title="Naked Detector", description=description ) interface.launch() # this is changed by ChatGPT, if it run like a shit. don't blame me ><