Spaces:
Build error
Build error
File size: 8,770 Bytes
d984b22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
#
# Copyright (c) 2013-present, Anoop Kunchukuttan
# All rights reserved.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
#
import pandas as pd
import numpy as np
import os
from indicnlp import common
from indicnlp.common import IndicNlpException
from indicnlp import langinfo as li
###
# Phonetic Information about script characters
###
""" Phonetic data about all languages except Tamil """
ALL_PHONETIC_DATA=None
""" Phonetic data for Tamil """
TAMIL_PHONETIC_DATA=None
""" Phonetic vector for all languages except Tamil """
ALL_PHONETIC_VECTORS=None
""" Phonetic vector for Tamil """
TAMIL_PHONETIC_VECTORS=None
""" Length of phonetic vector """
PHONETIC_VECTOR_LENGTH=38
""" Start offset for the phonetic feature vector in the phonetic data vector """
PHONETIC_VECTOR_START_OFFSET=6
## PHONETIC PROPERTIES in order in which they occur in the vector
## This list must be in sync with the keys in the PV_PROP_RANGES dictionary
PV_PROP=['basic_type',
'vowel_length',
'vowel_strength',
'vowel_status',
'consonant_type',
'articulation_place',
'aspiration',
'voicing',
'nasalization',
'vowel_horizontal',
'vowel_vertical',
'vowel_roundness',
]
###
# Bit vector ranges for various properties
###
PV_PROP_RANGES={
'basic_type': [0,6],
'vowel_length': [6,8],
'vowel_strength': [8,11],
'vowel_status': [11,13],
'consonant_type': [13,18],
'articulation_place': [18,23],
'aspiration': [23,25],
'voicing': [25,27],
'nasalization': [27,29],
'vowel_horizontal': [29,32],
'vowel_vertical': [32,36],
'vowel_roundness': [36,38],
}
####
# Indexes into the Phonetic Vector
####
PVIDX_BT_VOWEL=0
PVIDX_BT_CONSONANT=1
PVIDX_BT_NUKTA=2
PVIDX_BT_HALANT=3
PVIDX_BT_ANUSVAAR=4
PVIDX_BT_MISC=5
PVIDX_BT_S=PVIDX_BT_VOWEL
PVIDX_BT_E=PVIDX_BT_MISC+1
PVIDX_VSTAT_DEP=12
#####
# Unicode information about characters
#####
SCRIPT_OFFSET_START=0
SCRIPT_OFFSET_RANGE=0x80
def init():
"""
To be called by library loader, do not call it in your program
"""
global ALL_PHONETIC_DATA, ALL_PHONETIC_VECTORS, TAMIL_PHONETIC_DATA, TAMIL_PHONETIC_VECTORS, PHONETIC_VECTOR_LENGTH, PHONETIC_VECTOR_START_OFFSET
ALL_PHONETIC_DATA=pd.read_csv(os.path.join(common.get_resources_path(),'script','all_script_phonetic_data.csv'),encoding='utf-8')
TAMIL_PHONETIC_DATA=pd.read_csv(os.path.join(common.get_resources_path(),'script','tamil_script_phonetic_data.csv'),encoding='utf-8')
ALL_PHONETIC_VECTORS= ALL_PHONETIC_DATA.iloc[:,PHONETIC_VECTOR_START_OFFSET:].values
TAMIL_PHONETIC_VECTORS=TAMIL_PHONETIC_DATA.iloc[:,PHONETIC_VECTOR_START_OFFSET:].values
PHONETIC_VECTOR_LENGTH=ALL_PHONETIC_VECTORS.shape[1]
def is_supported_language(lang):
return lang in list(li.SCRIPT_RANGES.keys())
def get_offset(c,lang):
if not is_supported_language(lang):
raise IndicNlpException('Language {} not supported'.format(lang))
return ord(c)-li.SCRIPT_RANGES[lang][0]
def offset_to_char(off,lang):
"""
Applicable to Brahmi derived Indic scripts
"""
if not is_supported_language(lang):
raise IndicNlpException('Language {} not supported'.format(lang))
return chr(off+li.SCRIPT_RANGES[lang][0])
def is_indiclang_char(c,lang):
"""
Applicable to Brahmi derived Indic scripts
Note that DANDA and DOUBLE_DANDA have the same Unicode codepoint for all Indic scripts
"""
if not is_supported_language(lang):
raise IndicNlpException('Language {} not supported'.format(lang))
o=get_offset(c,lang)
return (o>=SCRIPT_OFFSET_START and o<SCRIPT_OFFSET_RANGE) \
or ord(c)==li.DANDA or ord(c)==li.DOUBLE_DANDA
def in_coordinated_range_offset(c_offset):
"""
Applicable to Brahmi derived Indic scripts
"""
return (c_offset>=li.COORDINATED_RANGE_START_INCLUSIVE and c_offset<=li.COORDINATED_RANGE_END_INCLUSIVE)
def in_coordinated_range(c,lang):
if not is_supported_language(lang):
raise IndicNlpException('Language {} not supported'.format(lang))
return in_coordinated_range_offset(get_offset(c,lang))
def get_phonetic_info(lang):
if not is_supported_language(lang):
raise IndicNlpException('Language {} not supported'.format(lang))
phonetic_data= ALL_PHONETIC_DATA if lang!=li.LC_TA else TAMIL_PHONETIC_DATA
phonetic_vectors= ALL_PHONETIC_VECTORS if lang!=li.LC_TA else TAMIL_PHONETIC_VECTORS
return (phonetic_data, phonetic_vectors)
def invalid_vector():
## TODO: check if np datatype is correct?
return np.array([0]*PHONETIC_VECTOR_LENGTH)
def get_phonetic_feature_vector(c,lang):
offset=get_offset(c,lang)
if not in_coordinated_range_offset(offset):
return invalid_vector()
phonetic_data, phonetic_vectors= get_phonetic_info(lang)
if phonetic_data.iloc[offset]['Valid Vector Representation']==0:
return invalid_vector()
return phonetic_vectors[offset]
def get_phonetic_feature_vector_offset(offset,lang):
if not in_coordinated_range_offset(offset):
return invalid_vector()
phonetic_data, phonetic_vectors= get_phonetic_info(lang)
if phonetic_data.iloc[offset]['Valid Vector Representation']==0:
return invalid_vector()
return phonetic_vectors[offset]
### Unary operations on vectors
def is_valid(v):
return np.sum(v)>0
def is_vowel(v):
return v[PVIDX_BT_VOWEL]==1
def is_consonant(v):
return v[PVIDX_BT_CONSONANT]==1
def is_halant(v):
return v[PVIDX_BT_HALANT]==1
def is_nukta(v):
return v[PVIDX_BT_NUKTA]==1
def is_anusvaar(v):
return v[PVIDX_BT_ANUSVAAR]==1
def is_misc(v):
return v[PVIDX_BT_MISC]==1
def is_dependent_vowel(v):
return is_vowel(v) and v[PVIDX_VSTAT_DEP]==1
def is_plosive(v):
return is_consonant(v) and get_property_vector(v,'consonant_type')[0]==1
### Binary operations on phonetic vectors
def or_vectors(v1,v2):
return np.array([ 1 if (b1+b2)>=1 else 0 for b1,b2 in zip(v1,v2) ])
def xor_vectors(v1,v2):
return np.array([ 1 if b1!=b2 else 0 for b1,b2 in zip(v1,v2) ])
### Getting properties from phonetic vectors
def get_property_vector(v,prop_name):
return v[PV_PROP_RANGES[prop_name][0]:PV_PROP_RANGES[prop_name][1]]
def get_property_value(v,prop_name):
factor_bits=get_property_vector(v,prop_name).tolist()
v=0
c=1
for b in factor_bits[::-1]:
v+=(c*b)
c=c*2.0
return int(v)
def lcsr_indic(srcw,tgtw,slang,tlang):
"""
compute the Longest Common Subsequence Ratio (LCSR) between two strings at the character level.
This works for Indic scripts by mapping both languages to a common script
srcw: source language string
tgtw: source language string
slang: source language
tlang: target language
"""
score_mat=np.zeros((len(srcw)+1,len(tgtw)+1))
for si,sc in enumerate(srcw,1):
for ti,tc in enumerate(tgtw,1):
so=get_offset(sc,slang)
to=get_offset(tc,tlang)
if in_coordinated_range_offset(so) and in_coordinated_range_offset(to) and so==to:
score_mat[si,ti]=score_mat[si-1,ti-1]+1.0
elif not (in_coordinated_range_offset(so) or in_coordinated_range_offset(to)) and sc==tc:
score_mat[si,ti]=score_mat[si-1,ti-1]+1.0
else:
score_mat[si,ti]= max(
score_mat[si,ti-1],
score_mat[si-1,ti])
return (score_mat[-1,-1]/float(max(len(srcw),len(tgtw))),float(len(srcw)),float(len(tgtw)))
def lcsr_any(srcw,tgtw):
"""
LCSR computation if both languages have the same script
"""
score_mat=np.zeros((len(srcw)+1,len(tgtw)+1))
for si,sc in enumerate(srcw,1):
for ti,tc in enumerate(tgtw,1):
if sc==tc:
score_mat[si,ti]=score_mat[si-1,ti-1]+1.0
else:
score_mat[si,ti]= max(
score_mat[si,ti-1],
score_mat[si-1,ti])
return (score_mat[-1,-1]/float(max(len(srcw),len(tgtw))),float(len(srcw)),float(len(tgtw)))
def lcsr(srcw,tgtw,slang,tlang):
"""
compute the Longest Common Subsequence Ratio (LCSR) between two strings at the character level.
srcw: source language string
tgtw: source language string
slang: source language
tlang: target language
"""
if slang==tlang or not is_supported_language(slang) or not is_supported_language(tlang):
return lcsr_any(srcw,tgtw,slang,tlang)
else:
return lcsr_indic(srcw,tgtw)
|