import gradio as gr from sentence_transformers import SentenceTransformer model_Q = SentenceTransformer('flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q') def getVectors(sentences): vectors = [] splitSentences = sentences.split('ZZZ') #for sentence in sentences: # vectors.append(model_Q.encode(sentence)) #return vectors return splitSentences interface = gr.Interface(fn = getVectors, inputs = "text", outputs = ['text'], title = 'get vectors', description = 'get vectors for search') interface.launch(inline = False)