import gradio as gr from transformers import pipeline sentiment = pipeline("sentiment-analysis") def get_sentiment(input_text): return sentiment(input_text) iface = gr.Interface(fn = get_sentiment, inputs = "text", outputs = ['text'], title = 'Sentiment Analysis', description="Get Sentiment Negative/Positive for the given input") iface.launch(inline = False) """ import gradio as gr from sentence_transformers import SentenceTransformer model_Q = SentenceTransformer('flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q') def getVectors(sentences): vectors = [] splitSentences = sentences.split('/*/') for sentence in sentences: vectors.append(model_Q.encode(sentence)) return vectors interface = gr.Interface(fn = getVectors, inputs = "text", outputs = ['text'], title = 'get vectors', description = 'get vectors for search') interface.launch(inline = False) """