File size: 988 Bytes
fbe9f47 75beac3 7f745fe 75beac3 38de044 75beac3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
import gradio as gr
from transformers import PreTrainedTokenizerFast, BartForConditionalGeneration
# from transformers import로 시작하는 import 문을 보면
# 많은 경우 AutoTokenizer, AutoModel
# tokenizer = AutoTokenizer.from_pretrained("model 이름 어쩌고 저쩌고")
# BART는 encoder-decoder 모델의 예시
model_name = "ainize/kobart-news"
tokenizer = PreTrainedTokenizerFast.from_pretrained(model_name)
model = BartForConditionalGeneration.from_pretrained(model_name)
def summ(txt):
input_ids=tokenizer.encode(txt, return_tensors="pt")
summary_text_ids=model.generate(
input_ids=input_ids,
bos_token_id=model.config.bos_token_id,
eos_token_id=model.config.eos_token_id,
length_penalty=2.0,
max_length=142,
min_length=56,
num_beams=4)
return tokenizer.decode(summary_text_ids[0],skip_special_tokens=True)
interface=gr.Interface(summ,[gr.Textbox(label="origina text")],[gr.Textbox(label="summary")])
interface.launch() |