File size: 988 Bytes
fbe9f47
75beac3
 
 
 
 
 
 
 
 
7f745fe
75beac3
 
 
 
 
 
38de044
75beac3
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import gradio as gr
from transformers import PreTrainedTokenizerFast, BartForConditionalGeneration
# from transformers import로 시작하는 import 문을 보면
# 많은 경우 AutoTokenizer, AutoModel
# tokenizer = AutoTokenizer.from_pretrained("model 이름 어쩌고 저쩌고")
# BART는 encoder-decoder 모델의 예시

model_name = "ainize/kobart-news"
tokenizer = PreTrainedTokenizerFast.from_pretrained(model_name)
model = BartForConditionalGeneration.from_pretrained(model_name)
def summ(txt):
  input_ids=tokenizer.encode(txt, return_tensors="pt")
  summary_text_ids=model.generate(
      input_ids=input_ids,
      bos_token_id=model.config.bos_token_id,
      eos_token_id=model.config.eos_token_id,
      length_penalty=2.0,
      max_length=142,
      min_length=56,
      num_beams=4)
  return tokenizer.decode(summary_text_ids[0],skip_special_tokens=True)

interface=gr.Interface(summ,[gr.Textbox(label="origina text")],[gr.Textbox(label="summary")])
interface.launch()