AnemiaDetection / app.py
sunil18p31a0101's picture
Update app.py
de5fa3d verified
raw
history blame
2.87 kB
import gradio as gr
import h2o
import numpy as np
import pandas as pd
import cv2
from skimage.color import rgb2hsv
from skimage.measure import shannon_entropy
from scipy.ndimage import generic_filter
# Initialize H2O and load the saved model
h2o.init()
model_path = "GBM_grid_1_AutoML_2_20241228_54907_model_10" # Replace with your H2O model path
h2o_model = h2o.load_model(model_path)
# Feature extraction function
def extract_features(image):
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Extract RGB means
meanr = np.mean(image[:, :, 0])
meang = np.mean(image[:, :, 1])
meanb = np.mean(image[:, :, 2])
# Convert to HSI and compute HHR
hsv_image = rgb2hsv(image)
hue = hsv_image[:, :, 0]
high_hue_pixels = np.sum(hue > 0.95)
total_pixels = hue.size
HHR = high_hue_pixels / total_pixels
# Convert to Grayscale
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# Compute Entropy and Brightness
Ent = shannon_entropy(gray_image)
B = np.mean(gray_image)
# Sliding window filters
def g1_filter(window):
return window[4] - np.min(window)
def g2_filter(window):
return np.max(window) - window[4]
def g3_filter(window):
return window[4] - np.mean(window)
def g4_filter(window):
return np.std(window)
def g5_filter(window):
return window[4]
g1 = generic_filter(gray_image, g1_filter, size=3).mean()
g2 = generic_filter(gray_image, g2_filter, size=3).mean()
g3 = generic_filter(gray_image, g3_filter, size=3).mean()
g4 = generic_filter(gray_image, g4_filter, size=3).mean()
g5 = generic_filter(gray_image, g5_filter, size=3).mean()
return {
"meanr": meanr,
"meang": meang,
"meanb": meanb,
"HHR": HHR,
"Ent": Ent,
"B": B,
"g1": g1,
"g2": g2,
"g3": g3,
"g4": g4,
"g5": g5,
}
# Prediction function
def predict(image, gender, age):
# Extract image features
features = extract_features(image)
features["gender"] = gender
features["age"] = age
# Convert features to DataFrame
features_df = pd.DataFrame([features])
features_h2o = h2o.H2OFrame(features_df)
# Predict using the model
prediction = h2o_model.predict(features_h2o)
return prediction.as_data_frame().iloc[0, 0]
# Gradio Interface
interface = gr.Interface(
fn=predict,
inputs=[
gr.Image(label="Upload Image"),
gr.Dropdown(choices=["Male", "Female"], label="Gender"),
gr.Slider(0, 100, step=1, label="Age"),
],
outputs="label",
title="Image-based Prediction App",
description="Upload an image, enter your gender and age, and get predictions using the pre-trained model."
)
# Launch the app
interface.launch()