Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,15 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
import cv2
|
5 |
-
import
|
6 |
-
from
|
7 |
-
from skimage.measure import shannon_entropy
|
8 |
-
from scipy.ndimage import generic_filter
|
9 |
-
|
10 |
-
# Load the pre-trained SVR model, MinMaxScaler, and LabelEncoder from pickle files
|
11 |
-
model_path = "svr_model.pkl" # Replace with the path to your pickle file
|
12 |
-
scaler_path = "minmax_scaler.pkl" # Replace with the path to your MinMaxScaler pickle file
|
13 |
-
encoder_path = "label_encoder.pkl" # Replace with the path to your LabelEncoder pickle file
|
14 |
-
|
15 |
-
# Load the pickle files
|
16 |
-
with open(model_path, 'rb') as f:
|
17 |
-
svr_model = joblib.load(f)
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
label_encoder = joblib.load(f)
|
24 |
|
25 |
# Feature extraction function
|
26 |
def extract_features(image):
|
@@ -32,79 +21,33 @@ def extract_features(image):
|
|
32 |
meang = np.mean(image[:, :, 1])
|
33 |
meanb = np.mean(image[:, :, 2])
|
34 |
|
35 |
-
#
|
36 |
-
hsv_image = rgb2hsv(image)
|
37 |
-
hue = hsv_image[:, :, 0]
|
38 |
-
high_hue_pixels = np.sum(hue > 0.95)
|
39 |
-
total_pixels = hue.size
|
40 |
-
HHR = high_hue_pixels / total_pixels
|
41 |
-
|
42 |
-
# Convert to Grayscale
|
43 |
-
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
44 |
-
|
45 |
-
# Compute Entropy and Brightness
|
46 |
-
Ent = shannon_entropy(gray_image)
|
47 |
-
B = np.mean(gray_image)
|
48 |
-
|
49 |
-
# Sliding window filters
|
50 |
-
def g1_filter(window):
|
51 |
-
return window[4] - np.min(window)
|
52 |
-
|
53 |
-
def g2_filter(window):
|
54 |
-
return np.max(window) - window[4]
|
55 |
-
|
56 |
-
def g3_filter(window):
|
57 |
-
return window[4] - np.mean(window)
|
58 |
-
|
59 |
-
def g4_filter(window):
|
60 |
-
return np.std(window)
|
61 |
-
|
62 |
-
def g5_filter(window):
|
63 |
-
return window[4]
|
64 |
-
|
65 |
-
g1 = generic_filter(gray_image, g1_filter, size=3).mean()
|
66 |
-
g2 = generic_filter(gray_image, g2_filter, size=3).mean()
|
67 |
-
g3 = generic_filter(gray_image, g3_filter, size=3).mean()
|
68 |
-
g4 = generic_filter(gray_image, g4_filter, size=3).mean()
|
69 |
-
g5 = generic_filter(gray_image, g5_filter, size=3).mean()
|
70 |
|
71 |
return {
|
72 |
"meanr": meanr,
|
73 |
"meang": meang,
|
74 |
"meanb": meanb,
|
75 |
-
|
76 |
-
"Ent": Ent,
|
77 |
-
"B": B,
|
78 |
-
"g1": g1,
|
79 |
-
"g2": g2,
|
80 |
-
"g3": g3,
|
81 |
-
"g4": g4,
|
82 |
-
"g5": g5,
|
83 |
}
|
84 |
|
85 |
# Prediction function
|
86 |
def predict(image, gender, age):
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
# Add gender and age to the feature dictionary
|
94 |
-
features["gender"] = gender_encoded
|
95 |
-
features["age"] = age
|
96 |
-
|
97 |
-
# Convert features to DataFrame
|
98 |
-
features_df = pd.DataFrame([features])
|
99 |
|
100 |
-
|
101 |
-
|
|
|
102 |
|
103 |
-
|
104 |
-
|
|
|
105 |
|
106 |
-
|
107 |
-
|
108 |
|
109 |
# Gradio Interface
|
110 |
interface = gr.Interface(
|
@@ -114,10 +57,10 @@ interface = gr.Interface(
|
|
114 |
gr.Dropdown(choices=["Male", "Female"], label="Gender"),
|
115 |
gr.Slider(0, 100, step=1, label="Age"),
|
116 |
],
|
117 |
-
outputs="
|
118 |
title="Image-based Prediction App",
|
119 |
-
description="Upload an image, enter your gender and age, and get predictions using the pre-trained
|
120 |
)
|
121 |
|
122 |
# Launch the app
|
123 |
-
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import joblib
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
5 |
import cv2
|
6 |
+
from sklearn.preprocessing import MinMaxScaler, LabelEncoder
|
7 |
+
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# Load SVR model and other pickled files
|
10 |
+
svr_model = joblib.load('svr_model.pkl')
|
11 |
+
scaler = joblib.load('scaler.pkl')
|
12 |
+
label_encoder = joblib.load('label_encoder.pkl')
|
|
|
13 |
|
14 |
# Feature extraction function
|
15 |
def extract_features(image):
|
|
|
21 |
meang = np.mean(image[:, :, 1])
|
22 |
meanb = np.mean(image[:, :, 2])
|
23 |
|
24 |
+
# Additional feature extraction logic here...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
return {
|
27 |
"meanr": meanr,
|
28 |
"meang": meang,
|
29 |
"meanb": meanb,
|
30 |
+
# Add more extracted features...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
}
|
32 |
|
33 |
# Prediction function
|
34 |
def predict(image, gender, age):
|
35 |
+
try:
|
36 |
+
# Extract image features
|
37 |
+
features = extract_features(image)
|
38 |
+
features["gender"] = label_encoder.transform([gender])[0] # Transform gender label
|
39 |
+
features["age"] = age
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
# Normalize features using MinMaxScaler
|
42 |
+
features_df = pd.DataFrame([features])
|
43 |
+
scaled_features = scaler.transform(features_df)
|
44 |
|
45 |
+
# Make prediction using the SVR model
|
46 |
+
prediction = svr_model.predict(scaled_features)
|
47 |
+
return prediction[0]
|
48 |
|
49 |
+
except Exception as e:
|
50 |
+
return f"Error: {str(e)}"
|
51 |
|
52 |
# Gradio Interface
|
53 |
interface = gr.Interface(
|
|
|
57 |
gr.Dropdown(choices=["Male", "Female"], label="Gender"),
|
58 |
gr.Slider(0, 100, step=1, label="Age"),
|
59 |
],
|
60 |
+
outputs="label",
|
61 |
title="Image-based Prediction App",
|
62 |
+
description="Upload an image, enter your gender and age, and get predictions using the pre-trained model."
|
63 |
)
|
64 |
|
65 |
# Launch the app
|
66 |
+
interface.launch(share=True)
|