Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,66 +1,98 @@
|
|
1 |
-
import gradio as gr
|
2 |
import joblib
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
5 |
import cv2
|
6 |
-
from
|
7 |
-
from
|
|
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
label_encoder = joblib.load('label_encoder.pkl')
|
13 |
-
|
14 |
-
# Feature extraction function
|
15 |
-
def extract_features(image):
|
16 |
-
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
17 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
18 |
-
|
19 |
# Extract RGB means
|
20 |
-
meanr = np.mean(image[:, :, 0])
|
21 |
-
meang = np.mean(image[:, :, 1])
|
22 |
-
meanb = np.mean(image[:, :, 2])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
return {
|
27 |
"meanr": meanr,
|
28 |
"meang": meang,
|
29 |
"meanb": meanb,
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
}
|
32 |
|
33 |
-
#
|
34 |
-
def
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
except Exception as e:
|
50 |
-
return f"Error: {str(e)}"
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
outputs="label",
|
61 |
-
title="Image-based Prediction App",
|
62 |
-
description="Upload an image, enter your gender and age, and get predictions using the pre-trained model."
|
63 |
-
)
|
64 |
|
65 |
-
# Launch the app
|
66 |
-
interface.launch(share=True)
|
|
|
|
|
1 |
import joblib
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
import cv2
|
5 |
+
from skimage.color import rgb2hsv
|
6 |
+
from skimage.measure import shannon_entropy
|
7 |
+
from scipy.ndimage import generic_filter
|
8 |
|
9 |
+
# Extract features from the image (same as your previous code)
|
10 |
+
def extract_features(image_path):
|
11 |
+
image = cv2.imread(image_path)
|
|
|
|
|
|
|
|
|
|
|
12 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
13 |
+
|
14 |
# Extract RGB means
|
15 |
+
meanr = np.mean(image[:, :, 0]) # Red channel
|
16 |
+
meang = np.mean(image[:, :, 1]) # Green channel
|
17 |
+
meanb = np.mean(image[:, :, 2]) # Blue channel
|
18 |
+
|
19 |
+
# Convert to HSI and compute HHR
|
20 |
+
hsv_image = rgb2hsv(image)
|
21 |
+
hue = hsv_image[:, :, 0]
|
22 |
+
high_hue_pixels = np.sum(hue > 0.95)
|
23 |
+
total_pixels = hue.size
|
24 |
+
HHR = high_hue_pixels / total_pixels
|
25 |
+
|
26 |
+
# Convert to Grayscale
|
27 |
+
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
28 |
+
|
29 |
+
# Compute Entropy
|
30 |
+
Ent = shannon_entropy(gray_image)
|
31 |
+
|
32 |
+
# Compute Brightness
|
33 |
+
B = np.mean(gray_image)
|
34 |
+
|
35 |
+
# Sliding window for gray-level features
|
36 |
+
def g1_filter(window):
|
37 |
+
return window[4] - np.min(window)
|
38 |
+
|
39 |
+
def g2_filter(window):
|
40 |
+
return np.max(window) - window[4]
|
41 |
+
|
42 |
+
def g3_filter(window):
|
43 |
+
return window[4] - np.mean(window)
|
44 |
+
|
45 |
+
def g4_filter(window):
|
46 |
+
return np.std(window)
|
47 |
|
48 |
+
def g5_filter(window):
|
49 |
+
return window[4]
|
50 |
|
51 |
+
# Apply filters with 3x3 window
|
52 |
+
g1 = generic_filter(gray_image, g1_filter, size=3).mean()
|
53 |
+
g2 = generic_filter(gray_image, g2_filter, size=3).mean()
|
54 |
+
g3 = generic_filter(gray_image, g3_filter, size=3).mean()
|
55 |
+
g4 = generic_filter(gray_image, g4_filter, size=3).mean()
|
56 |
+
g5 = generic_filter(gray_image, g5_filter, size=3).mean()
|
57 |
+
|
58 |
+
# Return features
|
59 |
return {
|
60 |
"meanr": meanr,
|
61 |
"meang": meang,
|
62 |
"meanb": meanb,
|
63 |
+
"HHR": HHR,
|
64 |
+
"Ent": Ent,
|
65 |
+
"B": B,
|
66 |
+
"g1": g1,
|
67 |
+
"g2": g2,
|
68 |
+
"g3": g3,
|
69 |
+
"g4": g4,
|
70 |
+
"g5": g5,
|
71 |
}
|
72 |
|
73 |
+
# Function to make predictions
|
74 |
+
def predict_hemoglobin(age, gender, image_path):
|
75 |
+
# Extract features from the image
|
76 |
+
features = extract_features(image_path)
|
77 |
+
|
78 |
+
# Add age and gender to the features
|
79 |
+
features['age'] = age
|
80 |
+
features['gender'] = 1 if gender.lower() == 'male' else 0
|
81 |
+
|
82 |
+
# Convert features to DataFrame
|
83 |
+
features_df = pd.DataFrame([features])
|
84 |
+
|
85 |
+
# Load the pre-trained models
|
86 |
+
svr_model = joblib.load('svr_model.pkl') # SVR model
|
87 |
+
scaler = joblib.load('minmax_scaler.pkl') # MinMaxScaler
|
88 |
+
label_encoder = joblib.load('label_encoder.pkl') # LabelEncoder
|
|
|
|
|
89 |
|
90 |
+
# Apply MinMaxScaler and LabelEncoder transformations
|
91 |
+
# For age and gender, you can scale them or leave them as-is, depending on your training procedure
|
92 |
+
features_df_scaled = scaler.transform(features_df)
|
93 |
+
|
94 |
+
# Make the prediction
|
95 |
+
hemoglobin = svr_model.predict(features_df_scaled)[0]
|
96 |
+
|
97 |
+
return hemoglobin
|
|
|
|
|
|
|
|
|
98 |
|
|
|
|