Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,17 +2,16 @@ import gradio as gr
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import joblib
|
5 |
-
import os
|
6 |
from skimage.measure import shannon_entropy
|
7 |
from skimage.color import rgb2hsv
|
8 |
from scipy.ndimage import generic_filter
|
9 |
import cv2
|
|
|
10 |
|
11 |
# Function to extract features from the image
|
12 |
-
def extract_features(
|
13 |
-
#
|
14 |
-
image =
|
15 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
16 |
|
17 |
# Extract RGB means
|
18 |
meanr = np.mean(image[:, :, 0]) # Red channel
|
@@ -76,12 +75,12 @@ def extract_features(image_path):
|
|
76 |
# Function to check if the image is a valid file format
|
77 |
def check_image_format(image):
|
78 |
try:
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
return False
|
84 |
except Exception as e:
|
|
|
85 |
return False
|
86 |
|
87 |
# Function to predict hemoglobin value
|
@@ -96,14 +95,14 @@ def predict_hemoglobin(age, gender, image):
|
|
96 |
features = extract_features(image)
|
97 |
|
98 |
# Ensure gender is encoded correctly (0 for female, 1 for male)
|
99 |
-
features['Gender'] = 1 if gender.lower() == '
|
100 |
features['Age'] = age
|
101 |
|
102 |
# Create a DataFrame for features (do not include Hgb, as it's the predicted value)
|
103 |
features_df = pd.DataFrame([features])
|
104 |
|
105 |
# Load the trained model, scaler, and label encoder
|
106 |
-
svr_model = joblib.load('svr_model
|
107 |
scaler = joblib.load('minmax_scaler.pkl')
|
108 |
label_encoder = joblib.load('label_encoder.pkl')
|
109 |
|
@@ -127,7 +126,7 @@ def predict_hemoglobin(age, gender, image):
|
|
127 |
# Gradio Interface setup
|
128 |
def create_gradio_interface():
|
129 |
# Define the inputs and outputs for the Gradio interface
|
130 |
-
image_input = gr.Image(type="
|
131 |
age_input = gr.Number(label="Age", value=25, precision=0)
|
132 |
gender_input = gr.Radio(choices=["Male", "Female"], label="Gender", value="Male")
|
133 |
|
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import joblib
|
|
|
5 |
from skimage.measure import shannon_entropy
|
6 |
from skimage.color import rgb2hsv
|
7 |
from scipy.ndimage import generic_filter
|
8 |
import cv2
|
9 |
+
from PIL import Image
|
10 |
|
11 |
# Function to extract features from the image
|
12 |
+
def extract_features(image):
|
13 |
+
# Convert PIL image to NumPy array
|
14 |
+
image = np.array(image)
|
|
|
15 |
|
16 |
# Extract RGB means
|
17 |
meanr = np.mean(image[:, :, 0]) # Red channel
|
|
|
75 |
# Function to check if the image is a valid file format
|
76 |
def check_image_format(image):
|
77 |
try:
|
78 |
+
# Try opening the image using PIL
|
79 |
+
img = Image.open(image)
|
80 |
+
img.verify() # Verify if it's a valid image file
|
81 |
+
return True
|
|
|
82 |
except Exception as e:
|
83 |
+
print(f"Error opening image: {e}")
|
84 |
return False
|
85 |
|
86 |
# Function to predict hemoglobin value
|
|
|
95 |
features = extract_features(image)
|
96 |
|
97 |
# Ensure gender is encoded correctly (0 for female, 1 for male)
|
98 |
+
features['Gender'] = 1 if gender.lower() == 'male' else 0
|
99 |
features['Age'] = age
|
100 |
|
101 |
# Create a DataFrame for features (do not include Hgb, as it's the predicted value)
|
102 |
features_df = pd.DataFrame([features])
|
103 |
|
104 |
# Load the trained model, scaler, and label encoder
|
105 |
+
svr_model = joblib.load('svr_model(1).pkl')
|
106 |
scaler = joblib.load('minmax_scaler.pkl')
|
107 |
label_encoder = joblib.load('label_encoder.pkl')
|
108 |
|
|
|
126 |
# Gradio Interface setup
|
127 |
def create_gradio_interface():
|
128 |
# Define the inputs and outputs for the Gradio interface
|
129 |
+
image_input = gr.Image(type="pil", label="Image (Upload Image)", interactive=True)
|
130 |
age_input = gr.Number(label="Age", value=25, precision=0)
|
131 |
gender_input = gr.Radio(choices=["Male", "Female"], label="Gender", value="Male")
|
132 |
|