Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,16 @@
|
|
|
|
|
|
1 |
import joblib
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
-
import
|
5 |
from skimage.color import rgb2hsv
|
6 |
from skimage.measure import shannon_entropy
|
7 |
from scipy.ndimage import generic_filter
|
8 |
|
9 |
-
#
|
10 |
def extract_features(image_path):
|
|
|
11 |
image = cv2.imread(image_path)
|
12 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
13 |
|
@@ -55,7 +58,7 @@ def extract_features(image_path):
|
|
55 |
g4 = generic_filter(gray_image, g4_filter, size=3).mean()
|
56 |
g5 = generic_filter(gray_image, g5_filter, size=3).mean()
|
57 |
|
58 |
-
# Return features
|
59 |
return {
|
60 |
"meanr": meanr,
|
61 |
"meang": meang,
|
@@ -70,10 +73,10 @@ def extract_features(image_path):
|
|
70 |
"g5": g5,
|
71 |
}
|
72 |
|
73 |
-
# Function to
|
74 |
-
def predict_hemoglobin(age, gender,
|
75 |
# Extract features from the image
|
76 |
-
features = extract_features(
|
77 |
|
78 |
# Add age and gender to the features
|
79 |
features['age'] = age
|
@@ -82,17 +85,37 @@ def predict_hemoglobin(age, gender, image_path):
|
|
82 |
# Convert features to DataFrame
|
83 |
features_df = pd.DataFrame([features])
|
84 |
|
85 |
-
# Load
|
86 |
svr_model = joblib.load('svr_model.pkl') # SVR model
|
87 |
scaler = joblib.load('minmax_scaler.pkl') # MinMaxScaler
|
88 |
label_encoder = joblib.load('label_encoder.pkl') # LabelEncoder
|
89 |
|
90 |
-
# Apply MinMaxScaler
|
91 |
-
# For age and gender, you can scale them or leave them as-is, depending on your training procedure
|
92 |
features_df_scaled = scaler.transform(features_df)
|
93 |
|
94 |
-
#
|
95 |
hemoglobin = svr_model.predict(features_df_scaled)[0]
|
96 |
|
97 |
-
return hemoglobin
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
import joblib
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
+
import gradio as gr
|
7 |
from skimage.color import rgb2hsv
|
8 |
from skimage.measure import shannon_entropy
|
9 |
from scipy.ndimage import generic_filter
|
10 |
|
11 |
+
# Function to extract features from the image
|
12 |
def extract_features(image_path):
|
13 |
+
# Load image and convert to RGB
|
14 |
image = cv2.imread(image_path)
|
15 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
16 |
|
|
|
58 |
g4 = generic_filter(gray_image, g4_filter, size=3).mean()
|
59 |
g5 = generic_filter(gray_image, g5_filter, size=3).mean()
|
60 |
|
61 |
+
# Return extracted features
|
62 |
return {
|
63 |
"meanr": meanr,
|
64 |
"meang": meang,
|
|
|
73 |
"g5": g5,
|
74 |
}
|
75 |
|
76 |
+
# Function to predict hemoglobin
|
77 |
+
def predict_hemoglobin(age, gender, image):
|
78 |
# Extract features from the image
|
79 |
+
features = extract_features(image.name) # Get the image file path
|
80 |
|
81 |
# Add age and gender to the features
|
82 |
features['age'] = age
|
|
|
85 |
# Convert features to DataFrame
|
86 |
features_df = pd.DataFrame([features])
|
87 |
|
88 |
+
# Load pre-trained models
|
89 |
svr_model = joblib.load('svr_model.pkl') # SVR model
|
90 |
scaler = joblib.load('minmax_scaler.pkl') # MinMaxScaler
|
91 |
label_encoder = joblib.load('label_encoder.pkl') # LabelEncoder
|
92 |
|
93 |
+
# Apply MinMaxScaler transformation
|
|
|
94 |
features_df_scaled = scaler.transform(features_df)
|
95 |
|
96 |
+
# Predict hemoglobin value
|
97 |
hemoglobin = svr_model.predict(features_df_scaled)[0]
|
98 |
|
99 |
+
return f"Predicted Hemoglobin Value: {hemoglobin:.2f}"
|
100 |
+
|
101 |
+
# Gradio Interface
|
102 |
+
def create_gradio_interface():
|
103 |
+
# Define the input components (age, gender, and image)
|
104 |
+
age_input = gr.Number(label="Age", value=25, interactive=True)
|
105 |
+
gender_input = gr.Dropdown(choices=["Male", "Female"], label="Gender", value="Male", interactive=True)
|
106 |
+
image_input = gr.Image(type="file", label="Image (Path to Image)", interactive=True)
|
107 |
+
|
108 |
+
# Define the output component (prediction result)
|
109 |
+
output = gr.Textbox(label="Hemoglobin Prediction")
|
110 |
+
|
111 |
+
# Create the Gradio interface
|
112 |
+
gr.Interface(
|
113 |
+
fn=predict_hemoglobin,
|
114 |
+
inputs=[age_input, gender_input, image_input],
|
115 |
+
outputs=output,
|
116 |
+
live=True
|
117 |
+
).launch()
|
118 |
|
119 |
+
# Start the Gradio app
|
120 |
+
if __name__ == "__main__":
|
121 |
+
create_gradio_interface()
|