sunil18p31a0101 commited on
Commit
7660b5c
·
verified ·
1 Parent(s): 4a7118f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -11
app.py CHANGED
@@ -1,13 +1,16 @@
 
 
1
  import joblib
2
  import numpy as np
3
  import pandas as pd
4
- import cv2
5
  from skimage.color import rgb2hsv
6
  from skimage.measure import shannon_entropy
7
  from scipy.ndimage import generic_filter
8
 
9
- # Extract features from the image (same as your previous code)
10
  def extract_features(image_path):
 
11
  image = cv2.imread(image_path)
12
  image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
13
 
@@ -55,7 +58,7 @@ def extract_features(image_path):
55
  g4 = generic_filter(gray_image, g4_filter, size=3).mean()
56
  g5 = generic_filter(gray_image, g5_filter, size=3).mean()
57
 
58
- # Return features
59
  return {
60
  "meanr": meanr,
61
  "meang": meang,
@@ -70,10 +73,10 @@ def extract_features(image_path):
70
  "g5": g5,
71
  }
72
 
73
- # Function to make predictions
74
- def predict_hemoglobin(age, gender, image_path):
75
  # Extract features from the image
76
- features = extract_features(image_path)
77
 
78
  # Add age and gender to the features
79
  features['age'] = age
@@ -82,17 +85,37 @@ def predict_hemoglobin(age, gender, image_path):
82
  # Convert features to DataFrame
83
  features_df = pd.DataFrame([features])
84
 
85
- # Load the pre-trained models
86
  svr_model = joblib.load('svr_model.pkl') # SVR model
87
  scaler = joblib.load('minmax_scaler.pkl') # MinMaxScaler
88
  label_encoder = joblib.load('label_encoder.pkl') # LabelEncoder
89
 
90
- # Apply MinMaxScaler and LabelEncoder transformations
91
- # For age and gender, you can scale them or leave them as-is, depending on your training procedure
92
  features_df_scaled = scaler.transform(features_df)
93
 
94
- # Make the prediction
95
  hemoglobin = svr_model.predict(features_df_scaled)[0]
96
 
97
- return hemoglobin
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98
 
 
 
 
 
1
+ import os
2
+ import cv2
3
  import joblib
4
  import numpy as np
5
  import pandas as pd
6
+ import gradio as gr
7
  from skimage.color import rgb2hsv
8
  from skimage.measure import shannon_entropy
9
  from scipy.ndimage import generic_filter
10
 
11
+ # Function to extract features from the image
12
  def extract_features(image_path):
13
+ # Load image and convert to RGB
14
  image = cv2.imread(image_path)
15
  image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
16
 
 
58
  g4 = generic_filter(gray_image, g4_filter, size=3).mean()
59
  g5 = generic_filter(gray_image, g5_filter, size=3).mean()
60
 
61
+ # Return extracted features
62
  return {
63
  "meanr": meanr,
64
  "meang": meang,
 
73
  "g5": g5,
74
  }
75
 
76
+ # Function to predict hemoglobin
77
+ def predict_hemoglobin(age, gender, image):
78
  # Extract features from the image
79
+ features = extract_features(image.name) # Get the image file path
80
 
81
  # Add age and gender to the features
82
  features['age'] = age
 
85
  # Convert features to DataFrame
86
  features_df = pd.DataFrame([features])
87
 
88
+ # Load pre-trained models
89
  svr_model = joblib.load('svr_model.pkl') # SVR model
90
  scaler = joblib.load('minmax_scaler.pkl') # MinMaxScaler
91
  label_encoder = joblib.load('label_encoder.pkl') # LabelEncoder
92
 
93
+ # Apply MinMaxScaler transformation
 
94
  features_df_scaled = scaler.transform(features_df)
95
 
96
+ # Predict hemoglobin value
97
  hemoglobin = svr_model.predict(features_df_scaled)[0]
98
 
99
+ return f"Predicted Hemoglobin Value: {hemoglobin:.2f}"
100
+
101
+ # Gradio Interface
102
+ def create_gradio_interface():
103
+ # Define the input components (age, gender, and image)
104
+ age_input = gr.Number(label="Age", value=25, interactive=True)
105
+ gender_input = gr.Dropdown(choices=["Male", "Female"], label="Gender", value="Male", interactive=True)
106
+ image_input = gr.Image(type="file", label="Image (Path to Image)", interactive=True)
107
+
108
+ # Define the output component (prediction result)
109
+ output = gr.Textbox(label="Hemoglobin Prediction")
110
+
111
+ # Create the Gradio interface
112
+ gr.Interface(
113
+ fn=predict_hemoglobin,
114
+ inputs=[age_input, gender_input, image_input],
115
+ outputs=output,
116
+ live=True
117
+ ).launch()
118
 
119
+ # Start the Gradio app
120
+ if __name__ == "__main__":
121
+ create_gradio_interface()