Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import h2o
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import cv2
|
6 |
+
from skimage.color import rgb2hsv
|
7 |
+
from skimage.measure import shannon_entropy
|
8 |
+
from scipy.ndimage import generic_filter
|
9 |
+
|
10 |
+
# Initialize H2O and load the saved model
|
11 |
+
h2o.init()
|
12 |
+
model_path = "" # Replace with your H2O model path
|
13 |
+
h2o_model = h2o.load_model(model_path)
|
14 |
+
|
15 |
+
# Feature extraction function
|
16 |
+
def extract_features(image):
|
17 |
+
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
18 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
19 |
+
|
20 |
+
# Extract RGB means
|
21 |
+
meanr = np.mean(image[:, :, 0])
|
22 |
+
meang = np.mean(image[:, :, 1])
|
23 |
+
meanb = np.mean(image[:, :, 2])
|
24 |
+
|
25 |
+
# Convert to HSI and compute HHR
|
26 |
+
hsv_image = rgb2hsv(image)
|
27 |
+
hue = hsv_image[:, :, 0]
|
28 |
+
high_hue_pixels = np.sum(hue > 0.95)
|
29 |
+
total_pixels = hue.size
|
30 |
+
HHR = high_hue_pixels / total_pixels
|
31 |
+
|
32 |
+
# Convert to Grayscale
|
33 |
+
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
34 |
+
|
35 |
+
# Compute Entropy and Brightness
|
36 |
+
Ent = shannon_entropy(gray_image)
|
37 |
+
B = np.mean(gray_image)
|
38 |
+
|
39 |
+
# Sliding window filters
|
40 |
+
def g1_filter(window):
|
41 |
+
return window[4] - np.min(window)
|
42 |
+
|
43 |
+
def g2_filter(window):
|
44 |
+
return np.max(window) - window[4]
|
45 |
+
|
46 |
+
def g3_filter(window):
|
47 |
+
return window[4] - np.mean(window)
|
48 |
+
|
49 |
+
def g4_filter(window):
|
50 |
+
return np.std(window)
|
51 |
+
|
52 |
+
def g5_filter(window):
|
53 |
+
return window[4]
|
54 |
+
|
55 |
+
g1 = generic_filter(gray_image, g1_filter, size=3).mean()
|
56 |
+
g2 = generic_filter(gray_image, g2_filter, size=3).mean()
|
57 |
+
g3 = generic_filter(gray_image, g3_filter, size=3).mean()
|
58 |
+
g4 = generic_filter(gray_image, g4_filter, size=3).mean()
|
59 |
+
g5 = generic_filter(gray_image, g5_filter, size=3).mean()
|
60 |
+
|
61 |
+
return {
|
62 |
+
"meanr": meanr,
|
63 |
+
"meang": meang,
|
64 |
+
"meanb": meanb,
|
65 |
+
"HHR": HHR,
|
66 |
+
"Ent": Ent,
|
67 |
+
"B": B,
|
68 |
+
"g1": g1,
|
69 |
+
"g2": g2,
|
70 |
+
"g3": g3,
|
71 |
+
"g4": g4,
|
72 |
+
"g5": g5,
|
73 |
+
}
|
74 |
+
|
75 |
+
# Prediction function
|
76 |
+
def predict(image, gender, age):
|
77 |
+
# Extract image features
|
78 |
+
features = extract_features(image)
|
79 |
+
features["gender"] = gender
|
80 |
+
features["age"] = age
|
81 |
+
|
82 |
+
# Convert features to DataFrame
|
83 |
+
features_df = pd.DataFrame([features])
|
84 |
+
features_h2o = h2o.H2OFrame(features_df)
|
85 |
+
|
86 |
+
# Predict using the model
|
87 |
+
prediction = h2o_model.predict(features_h2o)
|
88 |
+
return prediction.as_data_frame().iloc[0, 0]
|
89 |
+
|
90 |
+
# Gradio Interface
|
91 |
+
interface = gr.Interface(
|
92 |
+
fn=predict,
|
93 |
+
inputs=[
|
94 |
+
gr.Image(label="Upload Image"),
|
95 |
+
gr.Dropdown(choices=["Male", "Female"], label="Gender"),
|
96 |
+
gr.Slider(0, 100, step=1, label="Age"),
|
97 |
+
],
|
98 |
+
outputs="label",
|
99 |
+
title="Image-based Prediction App",
|
100 |
+
description="Upload an image, enter your gender and age, and get predictions using the pre-trained model."
|
101 |
+
)
|
102 |
+
|
103 |
+
# Launch the app
|
104 |
+
interface.launch()
|