Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,17 +11,17 @@ from sklearn.preprocessing import LabelEncoder
|
|
11 |
|
12 |
# Initialize LabelEncoder for gender encoding
|
13 |
gender_encoder = LabelEncoder()
|
14 |
-
gender_encoder.fit(['Female', 'Male']) #
|
15 |
|
16 |
# Function to extract features from the image
|
17 |
def extract_features(image):
|
18 |
# Convert PIL image to NumPy array
|
19 |
-
image = np.array(image)
|
20 |
|
21 |
# Extract RGB means
|
22 |
-
meanr = np.mean(image[:, :, 0])
|
23 |
-
meang = np.mean(image[:, :, 1])
|
24 |
-
meanb = np.mean(image[:, :, 2])
|
25 |
|
26 |
# Convert to HSI and compute HHR
|
27 |
hsv_image = rgb2hsv(image)
|
@@ -39,21 +39,12 @@ def extract_features(image):
|
|
39 |
# Compute Brightness
|
40 |
B = np.mean(gray_image)
|
41 |
|
42 |
-
#
|
43 |
-
def g1_filter(window):
|
44 |
-
|
45 |
-
|
46 |
-
def
|
47 |
-
|
48 |
-
|
49 |
-
def g3_filter(window):
|
50 |
-
return window[4] - np.mean(window)
|
51 |
-
|
52 |
-
def g4_filter(window):
|
53 |
-
return np.std(window)
|
54 |
-
|
55 |
-
def g5_filter(window):
|
56 |
-
return window[4]
|
57 |
|
58 |
# Apply filters with 3x3 window
|
59 |
g1 = generic_filter(gray_image, g1_filter, size=3).mean()
|
@@ -62,71 +53,56 @@ def extract_features(image):
|
|
62 |
g4 = generic_filter(gray_image, g4_filter, size=3).mean()
|
63 |
g5 = generic_filter(gray_image, g5_filter, size=3).mean()
|
64 |
|
65 |
-
# Return features
|
66 |
return {
|
67 |
-
"meanr": meanr,
|
68 |
-
"
|
69 |
-
"
|
70 |
-
"HHR": HHR,
|
71 |
-
"Ent": Ent,
|
72 |
-
"B": B,
|
73 |
-
"g1": g1,
|
74 |
-
"g2": g2,
|
75 |
-
"g3": g3,
|
76 |
-
"g4": g4,
|
77 |
-
"g5": g5,
|
78 |
}
|
79 |
|
80 |
-
# Function to
|
81 |
-
def
|
82 |
try:
|
83 |
-
#
|
84 |
-
with Image.open(filepath) as img:
|
85 |
-
img.verify() # Verify if it's a valid image file
|
86 |
-
return True
|
87 |
-
except Exception as e:
|
88 |
-
print(f"Error opening image: {e}")
|
89 |
-
return False
|
90 |
-
|
91 |
-
# Function to predict hemoglobin value with label encoding for gender
|
92 |
-
def predict_hemoglobin(age, Gender, image):
|
93 |
-
try:
|
94 |
-
# Ensure the image is not None
|
95 |
if image is None:
|
96 |
return "Error: No image uploaded. Please upload an image."
|
97 |
|
98 |
-
# Check if the image is valid
|
99 |
if not isinstance(image, Image.Image):
|
100 |
return "Error: Invalid image format. Please upload a valid image file."
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
# Extract features from the image
|
103 |
features = extract_features(image)
|
104 |
|
105 |
-
#
|
106 |
features['Gender'] = gender_encoder.transform([gender])[0]
|
107 |
features['Age'] = age
|
108 |
|
109 |
-
#
|
110 |
features_df = pd.DataFrame([features])
|
111 |
|
112 |
-
# Load
|
113 |
-
|
114 |
-
scaler = joblib.load('minmax_scaler.pkl')
|
115 |
|
116 |
-
# Ensure
|
117 |
expected_columns = ['meanr', 'meang', 'meanb', 'HHR', 'Ent', 'B', 'g1', 'g2', 'g3', 'g4', 'g5', 'Age', 'Gender']
|
118 |
-
|
119 |
for col in expected_columns:
|
120 |
if col not in features_df:
|
121 |
-
features_df[col] = 0 #
|
122 |
|
123 |
-
features_df = features_df[expected_columns] # Ensure
|
124 |
|
125 |
-
# Apply scaling
|
126 |
features_df_scaled = scaler.transform(features_df)
|
127 |
|
128 |
-
# Predict hemoglobin
|
129 |
-
hemoglobin =
|
130 |
|
131 |
return f"Predicted Hemoglobin Value: {hemoglobin:.2f}"
|
132 |
|
@@ -137,16 +113,16 @@ def predict_hemoglobin(age, Gender, image):
|
|
137 |
# Gradio interface
|
138 |
with gr.Blocks() as anemia_detection_app:
|
139 |
gr.Markdown("# Hemoglobin Prediction App")
|
140 |
-
|
141 |
with gr.Row():
|
142 |
age_input = gr.Number(label="Age", value=25)
|
143 |
-
gender_input = gr.Radio(label="Gender", choices=["Male", "Female"], value="Male")
|
144 |
|
145 |
image_input = gr.Image(label="Upload Retinal Image", type="pil")
|
146 |
output_text = gr.Textbox(label="Predicted Hemoglobin Value")
|
147 |
-
|
148 |
predict_button = gr.Button("Predict")
|
149 |
-
|
150 |
predict_button.click(
|
151 |
fn=predict_hemoglobin,
|
152 |
inputs=[age_input, gender_input, image_input],
|
@@ -155,4 +131,4 @@ with gr.Blocks() as anemia_detection_app:
|
|
155 |
|
156 |
# Run the app
|
157 |
if __name__ == "__main__":
|
158 |
-
anemia_detection_app.launch()
|
|
|
11 |
|
12 |
# Initialize LabelEncoder for gender encoding
|
13 |
gender_encoder = LabelEncoder()
|
14 |
+
gender_encoder.fit(['Female', 'Male']) # Ensuring correct label mapping
|
15 |
|
16 |
# Function to extract features from the image
|
17 |
def extract_features(image):
|
18 |
# Convert PIL image to NumPy array
|
19 |
+
image = np.array(image)
|
20 |
|
21 |
# Extract RGB means
|
22 |
+
meanr = np.mean(image[:, :, 0])
|
23 |
+
meang = np.mean(image[:, :, 1])
|
24 |
+
meanb = np.mean(image[:, :, 2])
|
25 |
|
26 |
# Convert to HSI and compute HHR
|
27 |
hsv_image = rgb2hsv(image)
|
|
|
39 |
# Compute Brightness
|
40 |
B = np.mean(gray_image)
|
41 |
|
42 |
+
# Define sliding window filters
|
43 |
+
def g1_filter(window): return window[4] - np.min(window)
|
44 |
+
def g2_filter(window): return np.max(window) - window[4]
|
45 |
+
def g3_filter(window): return window[4] - np.mean(window)
|
46 |
+
def g4_filter(window): return np.std(window)
|
47 |
+
def g5_filter(window): return window[4]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
# Apply filters with 3x3 window
|
50 |
g1 = generic_filter(gray_image, g1_filter, size=3).mean()
|
|
|
53 |
g4 = generic_filter(gray_image, g4_filter, size=3).mean()
|
54 |
g5 = generic_filter(gray_image, g5_filter, size=3).mean()
|
55 |
|
56 |
+
# Return extracted features
|
57 |
return {
|
58 |
+
"meanr": meanr, "meang": meang, "meanb": meanb,
|
59 |
+
"HHR": HHR, "Ent": Ent, "B": B, "g1": g1,
|
60 |
+
"g2": g2, "g3": g3, "g4": g4, "g5": g5,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
}
|
62 |
|
63 |
+
# Function to predict hemoglobin value
|
64 |
+
def predict_hemoglobin(age, gender, image):
|
65 |
try:
|
66 |
+
# Validate image input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
if image is None:
|
68 |
return "Error: No image uploaded. Please upload an image."
|
69 |
|
|
|
70 |
if not isinstance(image, Image.Image):
|
71 |
return "Error: Invalid image format. Please upload a valid image file."
|
72 |
|
73 |
+
# Validate gender input
|
74 |
+
if gender not in ["Male", "Female"]:
|
75 |
+
return "Error: Invalid gender selected."
|
76 |
+
|
77 |
+
print(f"Received Gender: {gender}") # Debugging line
|
78 |
+
|
79 |
# Extract features from the image
|
80 |
features = extract_features(image)
|
81 |
|
82 |
+
# Encode gender as a numerical value
|
83 |
features['Gender'] = gender_encoder.transform([gender])[0]
|
84 |
features['Age'] = age
|
85 |
|
86 |
+
# Convert to DataFrame
|
87 |
features_df = pd.DataFrame([features])
|
88 |
|
89 |
+
# Load trained model and scaler
|
90 |
+
model = joblib.load('lgbm_model.pkl') # Replace with actual path
|
91 |
+
scaler = joblib.load('minmax_scaler.pkl') # Replace with actual path
|
92 |
|
93 |
+
# Ensure features match expected columns
|
94 |
expected_columns = ['meanr', 'meang', 'meanb', 'HHR', 'Ent', 'B', 'g1', 'g2', 'g3', 'g4', 'g5', 'Age', 'Gender']
|
|
|
95 |
for col in expected_columns:
|
96 |
if col not in features_df:
|
97 |
+
features_df[col] = 0 # Assign default value if missing
|
98 |
|
99 |
+
features_df = features_df[expected_columns] # Ensure correct column order
|
100 |
|
101 |
+
# Apply scaling
|
102 |
features_df_scaled = scaler.transform(features_df)
|
103 |
|
104 |
+
# Predict hemoglobin
|
105 |
+
hemoglobin = model.predict(features_df_scaled)[0]
|
106 |
|
107 |
return f"Predicted Hemoglobin Value: {hemoglobin:.2f}"
|
108 |
|
|
|
113 |
# Gradio interface
|
114 |
with gr.Blocks() as anemia_detection_app:
|
115 |
gr.Markdown("# Hemoglobin Prediction App")
|
116 |
+
|
117 |
with gr.Row():
|
118 |
age_input = gr.Number(label="Age", value=25)
|
119 |
+
gender_input = gr.Radio(label="Gender", choices=["Male", "Female"], value="Male", type="value") # ✅ FIXED
|
120 |
|
121 |
image_input = gr.Image(label="Upload Retinal Image", type="pil")
|
122 |
output_text = gr.Textbox(label="Predicted Hemoglobin Value")
|
123 |
+
|
124 |
predict_button = gr.Button("Predict")
|
125 |
+
|
126 |
predict_button.click(
|
127 |
fn=predict_hemoglobin,
|
128 |
inputs=[age_input, gender_input, image_input],
|
|
|
131 |
|
132 |
# Run the app
|
133 |
if __name__ == "__main__":
|
134 |
+
anemia_detection_app.launch(share=True) # Enable public link
|