sunil18p31a0101 commited on
Commit
fc38a48
·
verified ·
1 Parent(s): 880bb6d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -49
app.py CHANGED
@@ -12,28 +12,28 @@ from PIL import Image
12
  def extract_features(image):
13
  # Convert PIL image to NumPy array
14
  image = np.array(image)
15
-
16
  # Extract RGB means
17
  meanr = np.mean(image[:, :, 0]) # Red channel
18
  meang = np.mean(image[:, :, 1]) # Green channel
19
  meanb = np.mean(image[:, :, 2]) # Blue channel
20
-
21
  # Convert to HSI and compute HHR
22
  hsv_image = rgb2hsv(image)
23
  hue = hsv_image[:, :, 0]
24
  high_hue_pixels = np.sum(hue > 0.95)
25
  total_pixels = hue.size
26
  HHR = high_hue_pixels / total_pixels
27
-
28
  # Convert to Grayscale
29
  gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
30
-
31
  # Compute Entropy
32
  Ent = shannon_entropy(gray_image)
33
-
34
  # Compute Brightness
35
  B = np.mean(gray_image)
36
-
37
  # Sliding window for gray-level features
38
  def g1_filter(window):
39
  return window[4] - np.min(window)
@@ -85,43 +85,45 @@ def check_image_format(image):
85
 
86
  # Function to predict hemoglobin value
87
  def predict_hemoglobin(age, gender, image):
88
- print(f"Image path: {image}") # Debugging line to check the image path
89
-
90
- # Check if the image file is valid
91
- if not check_image_format(image):
92
- return "Error: The uploaded image file is not recognized or is corrupt."
93
-
94
- # Extract features from the image
95
- features = extract_features(image)
96
-
97
- # Ensure gender is encoded correctly (0 for female, 1 for male)
98
- features['Gender'] = 1 if gender.lower() == 'male' else 0
99
- features['Age'] = age
100
-
101
- # Create a DataFrame for features (do not include Hgb, as it's the predicted value)
102
- features_df = pd.DataFrame([features])
103
-
104
- # Load the trained model, scaler, and label encoder
105
- svr_model = joblib.load('svr_model(1).pkl')
106
- scaler = joblib.load('minmax_scaler.pkl')
107
- label_encoder = joblib.load('label_encoder.pkl')
108
-
109
- # Ensure that features_df matches the expected training feature set (without 'Hgb')
110
- expected_columns = ['meanr', 'meang', 'meanb', 'HHR', 'Ent', 'B', 'g1', 'g2', 'g3', 'g4', 'g5', 'Age', 'Gender']
111
-
112
- for col in expected_columns:
113
- if col not in features_df:
114
- features_df[col] = 0 # Or some default value to match the expected columns.
115
-
116
- features_df = features_df[expected_columns] # Ensure the correct order of columns
117
-
118
- # Apply scaling (do not include 'Hgb' as it is the target)
119
- features_df_scaled = scaler.transform(features_df)
120
-
121
- # Predict hemoglobin using the trained SVR model
122
- hemoglobin = svr_model.predict(features_df_scaled)[0]
123
-
124
- return f"Predicted Hemoglobin Value: {hemoglobin:.2f}"
 
 
125
 
126
  # Gradio Interface setup
127
  def create_gradio_interface():
@@ -129,13 +131,16 @@ def create_gradio_interface():
129
  image_input = gr.Image(type="pil", label="Image (Upload Image)", interactive=True)
130
  age_input = gr.Number(label="Age", value=25, precision=0)
131
  gender_input = gr.Radio(choices=["Male", "Female"], label="Gender", value="Male")
132
-
133
  # Set up the Gradio interface with the prediction function
134
- gr.Interface(fn=predict_hemoglobin,
135
- inputs=[age_input, gender_input, image_input],
136
- outputs="text",
137
- live=True).launch(share=True)
 
 
 
138
 
139
  # Run the Gradio app
140
  if __name__ == "__main__":
141
- create_gradio_interface()
 
12
  def extract_features(image):
13
  # Convert PIL image to NumPy array
14
  image = np.array(image)
15
+
16
  # Extract RGB means
17
  meanr = np.mean(image[:, :, 0]) # Red channel
18
  meang = np.mean(image[:, :, 1]) # Green channel
19
  meanb = np.mean(image[:, :, 2]) # Blue channel
20
+
21
  # Convert to HSI and compute HHR
22
  hsv_image = rgb2hsv(image)
23
  hue = hsv_image[:, :, 0]
24
  high_hue_pixels = np.sum(hue > 0.95)
25
  total_pixels = hue.size
26
  HHR = high_hue_pixels / total_pixels
27
+
28
  # Convert to Grayscale
29
  gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
30
+
31
  # Compute Entropy
32
  Ent = shannon_entropy(gray_image)
33
+
34
  # Compute Brightness
35
  B = np.mean(gray_image)
36
+
37
  # Sliding window for gray-level features
38
  def g1_filter(window):
39
  return window[4] - np.min(window)
 
85
 
86
  # Function to predict hemoglobin value
87
  def predict_hemoglobin(age, gender, image):
88
+ try:
89
+ # Check if the image file is valid
90
+ if not check_image_format(image):
91
+ return "Error: The uploaded image file is not recognized or is corrupt. Please upload an image in JPG, PNG, BMP, or GIF format."
92
+
93
+ # Extract features from the image
94
+ features = extract_features(image)
95
+
96
+ # Ensure gender is encoded correctly (0 for female, 1 for male)
97
+ features['Gender'] = 1 if gender.lower() == 'M' else 0
98
+ features['Age'] = age
99
+
100
+ # Create a DataFrame for features (do not include Hgb, as it's the predicted value)
101
+ features_df = pd.DataFrame([features])
102
+
103
+ # Load the trained model, scaler, and label encoder
104
+ svr_model = joblib.load('svr_model(1).pkl') # Replace with the actual path to your model file
105
+ scaler = joblib.load('minmax_scaler.pkl') # Replace with the actual path to your scaler file
106
+
107
+ # Ensure that features_df matches the expected training feature set (without 'Hgb')
108
+ expected_columns = ['meanr', 'meang', 'meanb', 'HHR', 'Ent', 'B', 'g1', 'g2', 'g3', 'g4', 'g5', 'Age', 'Gender']
109
+
110
+ for col in expected_columns:
111
+ if col not in features_df:
112
+ features_df[col] = 0 # Or some default value to match the expected columns.
113
+
114
+ features_df = features_df[expected_columns] # Ensure the correct order of columns
115
+
116
+ # Apply scaling (do not include 'Hgb' as it is the target)
117
+ features_df_scaled = scaler.transform(features_df)
118
+
119
+ # Predict hemoglobin using the trained SVR model
120
+ hemoglobin = svr_model.predict(features_df_scaled)[0]
121
+
122
+ return f"Predicted Hemoglobin Value: {hemoglobin:.2f}"
123
+
124
+ except Exception as e:
125
+ print(f"An error occurred during prediction: {e}")
126
+ return "An error occurred during prediction. Please try again."
127
 
128
  # Gradio Interface setup
129
  def create_gradio_interface():
 
131
  image_input = gr.Image(type="pil", label="Image (Upload Image)", interactive=True)
132
  age_input = gr.Number(label="Age", value=25, precision=0)
133
  gender_input = gr.Radio(choices=["Male", "Female"], label="Gender", value="Male")
134
+
135
  # Set up the Gradio interface with the prediction function
136
+ iface = gr.Interface(fn=predict_hemoglobin,
137
+ inputs=[age_input, gender_input, image_input],
138
+ outputs="text",
139
+ live=True,
140
+ title="Hemoglobin Prediction")
141
+
142
+ iface.launch(share=True) # Set share=True to create a public link
143
 
144
  # Run the Gradio app
145
  if __name__ == "__main__":
146
+ create_gradio_interface()