Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,28 +12,28 @@ from PIL import Image
|
|
12 |
def extract_features(image):
|
13 |
# Convert PIL image to NumPy array
|
14 |
image = np.array(image)
|
15 |
-
|
16 |
# Extract RGB means
|
17 |
meanr = np.mean(image[:, :, 0]) # Red channel
|
18 |
meang = np.mean(image[:, :, 1]) # Green channel
|
19 |
meanb = np.mean(image[:, :, 2]) # Blue channel
|
20 |
-
|
21 |
# Convert to HSI and compute HHR
|
22 |
hsv_image = rgb2hsv(image)
|
23 |
hue = hsv_image[:, :, 0]
|
24 |
high_hue_pixels = np.sum(hue > 0.95)
|
25 |
total_pixels = hue.size
|
26 |
HHR = high_hue_pixels / total_pixels
|
27 |
-
|
28 |
# Convert to Grayscale
|
29 |
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
30 |
-
|
31 |
# Compute Entropy
|
32 |
Ent = shannon_entropy(gray_image)
|
33 |
-
|
34 |
# Compute Brightness
|
35 |
B = np.mean(gray_image)
|
36 |
-
|
37 |
# Sliding window for gray-level features
|
38 |
def g1_filter(window):
|
39 |
return window[4] - np.min(window)
|
@@ -85,43 +85,45 @@ def check_image_format(image):
|
|
85 |
|
86 |
# Function to predict hemoglobin value
|
87 |
def predict_hemoglobin(age, gender, image):
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
125 |
|
126 |
# Gradio Interface setup
|
127 |
def create_gradio_interface():
|
@@ -129,13 +131,16 @@ def create_gradio_interface():
|
|
129 |
image_input = gr.Image(type="pil", label="Image (Upload Image)", interactive=True)
|
130 |
age_input = gr.Number(label="Age", value=25, precision=0)
|
131 |
gender_input = gr.Radio(choices=["Male", "Female"], label="Gender", value="Male")
|
132 |
-
|
133 |
# Set up the Gradio interface with the prediction function
|
134 |
-
gr.Interface(fn=predict_hemoglobin,
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
138 |
|
139 |
# Run the Gradio app
|
140 |
if __name__ == "__main__":
|
141 |
-
create_gradio_interface()
|
|
|
12 |
def extract_features(image):
|
13 |
# Convert PIL image to NumPy array
|
14 |
image = np.array(image)
|
15 |
+
|
16 |
# Extract RGB means
|
17 |
meanr = np.mean(image[:, :, 0]) # Red channel
|
18 |
meang = np.mean(image[:, :, 1]) # Green channel
|
19 |
meanb = np.mean(image[:, :, 2]) # Blue channel
|
20 |
+
|
21 |
# Convert to HSI and compute HHR
|
22 |
hsv_image = rgb2hsv(image)
|
23 |
hue = hsv_image[:, :, 0]
|
24 |
high_hue_pixels = np.sum(hue > 0.95)
|
25 |
total_pixels = hue.size
|
26 |
HHR = high_hue_pixels / total_pixels
|
27 |
+
|
28 |
# Convert to Grayscale
|
29 |
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
30 |
+
|
31 |
# Compute Entropy
|
32 |
Ent = shannon_entropy(gray_image)
|
33 |
+
|
34 |
# Compute Brightness
|
35 |
B = np.mean(gray_image)
|
36 |
+
|
37 |
# Sliding window for gray-level features
|
38 |
def g1_filter(window):
|
39 |
return window[4] - np.min(window)
|
|
|
85 |
|
86 |
# Function to predict hemoglobin value
|
87 |
def predict_hemoglobin(age, gender, image):
|
88 |
+
try:
|
89 |
+
# Check if the image file is valid
|
90 |
+
if not check_image_format(image):
|
91 |
+
return "Error: The uploaded image file is not recognized or is corrupt. Please upload an image in JPG, PNG, BMP, or GIF format."
|
92 |
+
|
93 |
+
# Extract features from the image
|
94 |
+
features = extract_features(image)
|
95 |
+
|
96 |
+
# Ensure gender is encoded correctly (0 for female, 1 for male)
|
97 |
+
features['Gender'] = 1 if gender.lower() == 'M' else 0
|
98 |
+
features['Age'] = age
|
99 |
+
|
100 |
+
# Create a DataFrame for features (do not include Hgb, as it's the predicted value)
|
101 |
+
features_df = pd.DataFrame([features])
|
102 |
+
|
103 |
+
# Load the trained model, scaler, and label encoder
|
104 |
+
svr_model = joblib.load('svr_model(1).pkl') # Replace with the actual path to your model file
|
105 |
+
scaler = joblib.load('minmax_scaler.pkl') # Replace with the actual path to your scaler file
|
106 |
+
|
107 |
+
# Ensure that features_df matches the expected training feature set (without 'Hgb')
|
108 |
+
expected_columns = ['meanr', 'meang', 'meanb', 'HHR', 'Ent', 'B', 'g1', 'g2', 'g3', 'g4', 'g5', 'Age', 'Gender']
|
109 |
+
|
110 |
+
for col in expected_columns:
|
111 |
+
if col not in features_df:
|
112 |
+
features_df[col] = 0 # Or some default value to match the expected columns.
|
113 |
+
|
114 |
+
features_df = features_df[expected_columns] # Ensure the correct order of columns
|
115 |
+
|
116 |
+
# Apply scaling (do not include 'Hgb' as it is the target)
|
117 |
+
features_df_scaled = scaler.transform(features_df)
|
118 |
+
|
119 |
+
# Predict hemoglobin using the trained SVR model
|
120 |
+
hemoglobin = svr_model.predict(features_df_scaled)[0]
|
121 |
+
|
122 |
+
return f"Predicted Hemoglobin Value: {hemoglobin:.2f}"
|
123 |
+
|
124 |
+
except Exception as e:
|
125 |
+
print(f"An error occurred during prediction: {e}")
|
126 |
+
return "An error occurred during prediction. Please try again."
|
127 |
|
128 |
# Gradio Interface setup
|
129 |
def create_gradio_interface():
|
|
|
131 |
image_input = gr.Image(type="pil", label="Image (Upload Image)", interactive=True)
|
132 |
age_input = gr.Number(label="Age", value=25, precision=0)
|
133 |
gender_input = gr.Radio(choices=["Male", "Female"], label="Gender", value="Male")
|
134 |
+
|
135 |
# Set up the Gradio interface with the prediction function
|
136 |
+
iface = gr.Interface(fn=predict_hemoglobin,
|
137 |
+
inputs=[age_input, gender_input, image_input],
|
138 |
+
outputs="text",
|
139 |
+
live=True,
|
140 |
+
title="Hemoglobin Prediction")
|
141 |
+
|
142 |
+
iface.launch(share=True) # Set share=True to create a public link
|
143 |
|
144 |
# Run the Gradio app
|
145 |
if __name__ == "__main__":
|
146 |
+
create_gradio_interface()
|