import gradio as gr import joblib import numpy as np import pandas as pd import cv2 from skimage.color import rgb2hsv from skimage.measure import shannon_entropy from scipy.ndimage import generic_filter # Extract features from the image (same as your previous code) def extract_features(image_path): image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Extract RGB means meanr = np.mean(image[:, :, 0]) # Red channel meang = np.mean(image[:, :, 1]) # Green channel meanb = np.mean(image[:, :, 2]) # Blue channel # Convert to HSI and compute HHR hsv_image = rgb2hsv(image) hue = hsv_image[:, :, 0] high_hue_pixels = np.sum(hue > 0.95) total_pixels = hue.size HHR = high_hue_pixels / total_pixels # Convert to Grayscale gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) # Compute Entropy Ent = shannon_entropy(gray_image) # Compute Brightness B = np.mean(gray_image) # Sliding window for gray-level features def g1_filter(window): return window[4] - np.min(window) def g2_filter(window): return np.max(window) - window[4] def g3_filter(window): return window[4] - np.mean(window) def g4_filter(window): return np.std(window) def g5_filter(window): return window[4] # Apply filters with 3x3 window g1 = generic_filter(gray_image, g1_filter, size=3).mean() g2 = generic_filter(gray_image, g2_filter, size=3).mean() g3 = generic_filter(gray_image, g3_filter, size=3).mean() g4 = generic_filter(gray_image, g4_filter, size=3).mean() g5 = generic_filter(gray_image, g5_filter, size=3).mean() # Return features return { "meanr": meanr, "meang": meang, "meanb": meanb, "HHR": HHR, "Ent": Ent, "B": B, "g1": g1, "g2": g2, "g3": g3, "g4": g4, "g5": g5, } # Function to make predictions def predict_hemoglobin(age, gender, image): # Extract features from the image features = extract_features(image) # Use the file path directly # Add age and gender to the features features['age'] = age features['gender'] = 1 if gender.lower() == 'male' else 0 # Convert features to DataFrame features_df = pd.DataFrame([features]) # Load the pre-trained models svr_model = joblib.load('svr_model.pkl') # SVR model scaler = joblib.load('scaler.pkl') # MinMaxScaler label_encoder = joblib.load('label_encoder.pkl') # LabelEncoder # Apply MinMaxScaler transformation features_df_scaled = scaler.transform(features_df) # Make the prediction hemoglobin = svr_model.predict(features_df_scaled)[0] return f"Predicted Hemoglobin Value: {hemoglobin:.2f}" # Gradio Interface def gradio_interface(): with gr.Blocks() as demo: gr.Markdown("## Hemoglobin Prediction from Image Features") with gr.Row(): age = gr.Number(label="Age", value=25) gender = gr.Dropdown(choices=["Male", "Female"], label="Gender", value="Male") image_input = gr.Image(type="filepath", label="Upload Image (Path to Image)", interactive=True) output = gr.Textbox(label="Predicted Hemoglobin Value") # Prediction button predict_btn = gr.Button("Predict Hemoglobin") predict_btn.click(fn=predict_hemoglobin, inputs=[age, gender, image_input], outputs=output) return demo # Launch the app if __name__ == "__main__": gradio_interface().launch(share=True) # Set `share=True` to create a public link