import gradio as gr import pandas as pd import numpy as np import joblib import os from skimage.measure import shannon_entropy from skimage.color import rgb2hsv from scipy.ndimage import generic_filter import cv2 # Function to extract features from the image def extract_features(image_path): # Load image and convert to RGB image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Extract RGB means meanr = np.mean(image[:, :, 0]) # Red channel meang = np.mean(image[:, :, 1]) # Green channel meanb = np.mean(image[:, :, 2]) # Blue channel # Convert to HSI and compute HHR hsv_image = rgb2hsv(image) hue = hsv_image[:, :, 0] high_hue_pixels = np.sum(hue > 0.95) total_pixels = hue.size HHR = high_hue_pixels / total_pixels # Convert to Grayscale gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) # Compute Entropy Ent = shannon_entropy(gray_image) # Compute Brightness B = np.mean(gray_image) # Sliding window for gray-level features def g1_filter(window): return window[4] - np.min(window) def g2_filter(window): return np.max(window) - window[4] def g3_filter(window): return window[4] - np.mean(window) def g4_filter(window): return np.std(window) def g5_filter(window): return window[4] # Apply filters with 3x3 window g1 = generic_filter(gray_image, g1_filter, size=3).mean() g2 = generic_filter(gray_image, g2_filter, size=3).mean() g3 = generic_filter(gray_image, g3_filter, size=3).mean() g4 = generic_filter(gray_image, g4_filter, size=3).mean() g5 = generic_filter(gray_image, g5_filter, size=3).mean() # Return features return { "meanr": meanr, "meang": meang, "meanb": meanb, "HHR": HHR, "Ent": Ent, "B": B, "g1": g1, "g2": g2, "g3": g3, "g4": g4, "g5": g5, } # Function to check if the image is a valid file format def check_image_format(image): try: img = cv2.imread(image) if img is not None: return True else: return False except Exception as e: return False # Function to predict hemoglobin value def predict_hemoglobin(age, gender, image): print(f"Image path: {image}") # Debugging line to check the image path # Check if the image file is valid if not check_image_format(image): return "Error: The uploaded image file is not recognized or is corrupt." # Extract features from the image features = extract_features(image) # Ensure gender is encoded correctly (0 for female, 1 for male) features['Gender'] = 1 if gender.lower() == 'M' else 0 features['Age'] = age # Create a DataFrame for features (do not include Hgb, as it's the predicted value) features_df = pd.DataFrame([features]) # Load the trained model, scaler, and label encoder svr_model = joblib.load('svr_model (1).pkl') scaler = joblib.load('minmax_scaler.pkl') label_encoder = joblib.load('label_encoder.pkl') # Ensure that features_df matches the expected training feature set (without 'Hgb') expected_columns = ['meanr', 'meang', 'meanb', 'HHR', 'Ent', 'B', 'g1', 'g2', 'g3', 'g4', 'g5', 'Age', 'Gender'] for col in expected_columns: if col not in features_df: features_df[col] = 0 # Or some default value to match the expected columns. features_df = features_df[expected_columns] # Ensure the correct order of columns # Apply scaling (do not include 'Hgb' as it is the target) features_df_scaled = scaler.transform(features_df) # Predict hemoglobin using the trained SVR model hemoglobin = svr_model.predict(features_df_scaled)[0] return f"Predicted Hemoglobin Value: {hemoglobin:.2f}" # Gradio Interface setup def create_gradio_interface(): # Define the inputs and outputs for the Gradio interface image_input = gr.Image(type="filepath", label="Image (Path to Image)", interactive=True) age_input = gr.Number(label="Age", value=25, precision=0) gender_input = gr.Radio(choices=["Male", "Female"], label="Gender", value="Male") # Set up the Gradio interface with the prediction function gr.Interface(fn=predict_hemoglobin, inputs=[age_input, gender_input, image_input], outputs="text", live=True).launch(share=True) # Run the Gradio app if __name__ == "__main__": create_gradio_interface()