import gradio as gr import pandas as pd import numpy as np import joblib from skimage.measure import shannon_entropy from skimage.color import rgb2hsv from scipy.ndimage import generic_filter import cv2 from PIL import Image from sklearn.preprocessing import LabelEncoder # Load trained model and scaler model = joblib.load('lgbm_model.pkl') # Replace with actual path scaler = joblib.load('minmax_scaler.pkl') # Replace with actual path # Define the expected feature names manually expected_features = ['meanr', 'meang', 'meanb', 'HHR', 'Ent', 'B', 'g1', 'g2', 'g3', 'g4', 'g5', 'Age'] # No 'Hgb' # Include 'Gender' if it was used during training use_gender = True # Set to False if your model was not trained with 'Gender' if use_gender: expected_features.append('Gender') # Initialize LabelEncoder for gender encoding (if used in training) gender_encoder = LabelEncoder() gender_encoder.fit(['Female', 'Male']) # Function to extract features def extract_features(image): image = np.array(image) meanr = np.mean(image[:, :, 0]) meang = np.mean(image[:, :, 1]) meanb = np.mean(image[:, :, 2]) hsv_image = rgb2hsv(image) hue = hsv_image[:, :, 0] high_hue_pixels = np.sum(hue > 0.95) total_pixels = hue.size HHR = high_hue_pixels / total_pixels gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) Ent = shannon_entropy(gray_image) B = np.mean(gray_image) def g1_filter(window): return window[4] - np.min(window) def g2_filter(window): return np.max(window) - window[4] def g3_filter(window): return window[4] - np.mean(window) def g4_filter(window): return np.std(window) def g5_filter(window): return window[4] g1 = generic_filter(gray_image, g1_filter, size=3).mean() g2 = generic_filter(gray_image, g2_filter, size=3).mean() g3 = generic_filter(gray_image, g3_filter, size=3).mean() g4 = generic_filter(gray_image, g4_filter, size=3).mean() g5 = generic_filter(gray_image, g5_filter, size=3).mean() return { "meanr": meanr, "meang": meang, "meanb": meanb, "HHR": HHR, "Ent": Ent, "B": B, "g1": g1, "g2": g2, "g3": g3, "g4": g4, "g5": g5, } # Prediction function def predict_hemoglobin(age, gender, image): try: if image is None: return "Error: No image uploaded. Please upload an image." if not isinstance(image, Image.Image): return "Error: Invalid image format. Please upload a valid image file." # Extract features features = extract_features(image) # Encode gender only if used in training if use_gender: features["Gender"] = gender_encoder.transform([gender])[0] features["Age"] = age # Convert to DataFrame features_df = pd.DataFrame([features]) # Ensure only model-expected features are used for col in expected_features: if col not in features_df: features_df[col] = 0 # Add missing columns with default value features_df = features_df[expected_features] # Ensure correct column order # Apply scaling features_scaled = scaler.transform(features_df) # Predict hemoglobin hemoglobin = model.predict(features_scaled)[0] return f"Predicted Hemoglobin Value: {hemoglobin:.2f}" except Exception as e: print(f"Error during prediction: {e}") return "An error occurred. Please check inputs and try again." # Gradio interface with gr.Blocks() as anemia_detection_app: gr.Markdown("# Hemoglobin Prediction App") with gr.Row(): age_input = gr.Number(label="Age", value=25) gender_input = gr.Radio(label="Gender", choices=["Male", "Female"], value="Male", type="value") image_input = gr.Image(label="Upload Retinal Image", type="pil") output_text = gr.Textbox(label="Predicted Hemoglobin Value") predict_button = gr.Button("Predict") predict_button.click( fn=predict_hemoglobin, inputs=[age_input, gender_input, image_input], outputs=output_text ) # Run the app if __name__ == "__main__": anemia_detection_app.launch(share=True) # Enable public link