Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,37 @@
|
|
1 |
import os
|
2 |
os.system('pip install transformers')
|
3 |
os.system('pip install torch')
|
4 |
-
|
|
|
|
|
5 |
import transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
"season of Darkness, it was the spring of hope, it was the winter of "
|
14 |
-
"despair, (...)",
|
15 |
-
)
|
16 |
|
17 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
os.system('pip install transformers')
|
3 |
os.system('pip install torch')
|
4 |
+
|
5 |
+
# Import required libraries
|
6 |
+
import torch
|
7 |
import transformers
|
8 |
+
import streamlit as st
|
9 |
+
from transformers import pipeline
|
10 |
+
|
11 |
+
# Initialize the Streamlit app
|
12 |
+
st.set_page_config(layout="wide")
|
13 |
+
st.header("Sentiment Analysis App")
|
14 |
+
|
15 |
+
# Define the function for performing sentiment analysis
|
16 |
+
def analyze_sentiment(text):
|
17 |
+
# Load the pre-trained sentiment analysis model and tokenizer
|
18 |
+
model = pipeline('sentiment-analysis')
|
19 |
+
|
20 |
+
# Perform sentiment analysis on the input text
|
21 |
+
result = model(text)[0]['label']
|
22 |
+
|
23 |
+
# Return the predicted sentiment label
|
24 |
+
return result
|
25 |
|
26 |
+
# Create the user input form
|
27 |
+
col1, col2 = st.beta_columns(2)
|
28 |
+
with col1:
|
29 |
+
text_input = st.text_area("Enter Text:", "", key="my_input")
|
30 |
+
with col2:
|
31 |
+
submitted = st.form_submit_button("Submit")
|
|
|
|
|
|
|
32 |
|
33 |
+
# Display the sentiment analysis results
|
34 |
+
if submitted:
|
35 |
+
sentiment = analyze_sentiment(text_input)
|
36 |
+
st.subheader("Sentiment Analysis Result:")
|
37 |
+
st.write(f"**Predicted Sentiment:** {sentiment}")
|