sunil448832's picture
Initial Commit
eccde2c
raw
history blame
2.24 kB
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Define a Language Model class
class LLM:
def __init__(self, model_name):
# Determine the device to use (GPU if available, otherwise CPU)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# Load the pre-trained language model with specific settings
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16, # Set the data type to float16
load_in_8bit=True, # Load in 8-bit format if available
device_map='auto' # Automatically select the device
).bfloat16() # Convert the model to bfloat16 for lower precision
# Initialize the tokenizer for the same model
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
# Set custom padding token and padding side
self.tokenizer.pad_token = "[PAD]"
self.tokenizer.padding_side = "left"
def generate_response(self, messages, max_tokens=100, do_sample=True):
# Tokenize the input messages and move them to the selected device (GPU or CPU)
input_ids = self.tokenizer(
messages,
max_length=512,
padding=True,
truncation=True,
return_tensors='pt'
).input_ids.cuda()
with torch.no_grad():
# Generate a response using the loaded model
generated_ids = self.model.generate(
input_ids,
pad_token_id=self.tokenizer.pad_token_id,
max_new_tokens=max_tokens,
do_sample=do_sample,
temperature=0.3 # Adjust the sampling temperature
)
# Decode the generated tokens into a human-readable response
response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=False)[0]
return response
# Main program
if __name__ == '__main__':
# Specify the model name to use
model_name = "mistralai/Mistral-7B-Instruct-v0.1"
# Create an instance of the Language Model class with the specified model
llm = LLM(model_name)