File size: 6,625 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Natural Language Toolkit: Classifier Interface
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Edward Loper <[email protected]>
#         Steven Bird <[email protected]> (minor additions)
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT

"""

Interfaces for labeling tokens with category labels (or "class labels").



``ClassifierI`` is a standard interface for "single-category

classification", in which the set of categories is known, the number

of categories is finite, and each text belongs to exactly one

category.



``MultiClassifierI`` is a standard interface for "multi-category

classification", which is like single-category classification except

that each text belongs to zero or more categories.

"""
from nltk.internals import overridden

##//////////////////////////////////////////////////////
# { Classification Interfaces
##//////////////////////////////////////////////////////


class ClassifierI:
    """

    A processing interface for labeling tokens with a single category

    label (or "class").  Labels are typically strs or

    ints, but can be any immutable type.  The set of labels

    that the classifier chooses from must be fixed and finite.



    Subclasses must define:

      - ``labels()``

      - either ``classify()`` or ``classify_many()`` (or both)



    Subclasses may define:

      - either ``prob_classify()`` or ``prob_classify_many()`` (or both)

    """

    def labels(self):
        """

        :return: the list of category labels used by this classifier.

        :rtype: list of (immutable)

        """
        raise NotImplementedError()

    def classify(self, featureset):
        """

        :return: the most appropriate label for the given featureset.

        :rtype: label

        """
        if overridden(self.classify_many):
            return self.classify_many([featureset])[0]
        else:
            raise NotImplementedError()

    def prob_classify(self, featureset):
        """

        :return: a probability distribution over labels for the given

            featureset.

        :rtype: ProbDistI

        """
        if overridden(self.prob_classify_many):
            return self.prob_classify_many([featureset])[0]
        else:
            raise NotImplementedError()

    def classify_many(self, featuresets):
        """

        Apply ``self.classify()`` to each element of ``featuresets``.  I.e.:



            return [self.classify(fs) for fs in featuresets]



        :rtype: list(label)

        """
        return [self.classify(fs) for fs in featuresets]

    def prob_classify_many(self, featuresets):
        """

        Apply ``self.prob_classify()`` to each element of ``featuresets``.  I.e.:



            return [self.prob_classify(fs) for fs in featuresets]



        :rtype: list(ProbDistI)

        """
        return [self.prob_classify(fs) for fs in featuresets]


class MultiClassifierI:
    """

    A processing interface for labeling tokens with zero or more

    category labels (or "labels").  Labels are typically strs

    or ints, but can be any immutable type.  The set of labels

    that the multi-classifier chooses from must be fixed and finite.



    Subclasses must define:

      - ``labels()``

      - either ``classify()`` or ``classify_many()`` (or both)



    Subclasses may define:

      - either ``prob_classify()`` or ``prob_classify_many()`` (or both)

    """

    def labels(self):
        """

        :return: the list of category labels used by this classifier.

        :rtype: list of (immutable)

        """
        raise NotImplementedError()

    def classify(self, featureset):
        """

        :return: the most appropriate set of labels for the given featureset.

        :rtype: set(label)

        """
        if overridden(self.classify_many):
            return self.classify_many([featureset])[0]
        else:
            raise NotImplementedError()

    def prob_classify(self, featureset):
        """

        :return: a probability distribution over sets of labels for the

            given featureset.

        :rtype: ProbDistI

        """
        if overridden(self.prob_classify_many):
            return self.prob_classify_many([featureset])[0]
        else:
            raise NotImplementedError()

    def classify_many(self, featuresets):
        """

        Apply ``self.classify()`` to each element of ``featuresets``.  I.e.:



            return [self.classify(fs) for fs in featuresets]



        :rtype: list(set(label))

        """
        return [self.classify(fs) for fs in featuresets]

    def prob_classify_many(self, featuresets):
        """

        Apply ``self.prob_classify()`` to each element of ``featuresets``.  I.e.:



            return [self.prob_classify(fs) for fs in featuresets]



        :rtype: list(ProbDistI)

        """
        return [self.prob_classify(fs) for fs in featuresets]


# # [XX] IN PROGRESS:
# class SequenceClassifierI:
#     """
#     A processing interface for labeling sequences of tokens with a
#     single category label (or "class").  Labels are typically
#     strs or ints, but can be any immutable type.  The set
#     of labels that the classifier chooses from must be fixed and
#     finite.
#     """
#     def labels(self):
#         """
#         :return: the list of category labels used by this classifier.
#         :rtype: list of (immutable)
#         """
#         raise NotImplementedError()

#     def prob_classify(self, featureset):
#         """
#         Return a probability distribution over labels for the given
#         featureset.

#         If ``featureset`` is a list of featuresets, then return a
#         corresponding list containing the probability distribution
#         over labels for each of the given featuresets, where the
#         *i*\ th element of this list is the most appropriate label for
#         the *i*\ th element of ``featuresets``.
#         """
#         raise NotImplementedError()

#     def classify(self, featureset):
#         """
#         Return the most appropriate label for the given featureset.

#         If ``featureset`` is a list of featuresets, then return a
#         corresponding list containing the most appropriate label for
#         each of the given featuresets, where the *i*\ th element of
#         this list is the most appropriate label for the *i*\ th element
#         of ``featuresets``.
#         """
#         raise NotImplementedError()