Spaces:
Sleeping
Sleeping
File size: 60,921 Bytes
d916065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 |
# Natural Language Toolkit: Maximum Entropy Classifiers
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Edward Loper <[email protected]>
# Dmitry Chichkov <[email protected]> (TypedMaxentFeatureEncoding)
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
"""
A classifier model based on maximum entropy modeling framework. This
framework considers all of the probability distributions that are
empirically consistent with the training data; and chooses the
distribution with the highest entropy. A probability distribution is
"empirically consistent" with a set of training data if its estimated
frequency with which a class and a feature vector value co-occur is
equal to the actual frequency in the data.
Terminology: 'feature'
======================
The term *feature* is usually used to refer to some property of an
unlabeled token. For example, when performing word sense
disambiguation, we might define a ``'prevword'`` feature whose value is
the word preceding the target word. However, in the context of
maxent modeling, the term *feature* is typically used to refer to a
property of a "labeled" token. In order to prevent confusion, we
will introduce two distinct terms to disambiguate these two different
concepts:
- An "input-feature" is a property of an unlabeled token.
- A "joint-feature" is a property of a labeled token.
In the rest of the ``nltk.classify`` module, the term "features" is
used to refer to what we will call "input-features" in this module.
In literature that describes and discusses maximum entropy models,
input-features are typically called "contexts", and joint-features
are simply referred to as "features".
Converting Input-Features to Joint-Features
-------------------------------------------
In maximum entropy models, joint-features are required to have numeric
values. Typically, each input-feature ``input_feat`` is mapped to a
set of joint-features of the form:
| joint_feat(token, label) = { 1 if input_feat(token) == feat_val
| { and label == some_label
| {
| { 0 otherwise
For all values of ``feat_val`` and ``some_label``. This mapping is
performed by classes that implement the ``MaxentFeatureEncodingI``
interface.
"""
try:
import numpy
except ImportError:
pass
import os
import tempfile
from collections import defaultdict
from nltk.classify.api import ClassifierI
from nltk.classify.megam import call_megam, parse_megam_weights, write_megam_file
from nltk.classify.tadm import call_tadm, parse_tadm_weights, write_tadm_file
from nltk.classify.util import CutoffChecker, accuracy, log_likelihood
from nltk.data import gzip_open_unicode
from nltk.probability import DictionaryProbDist
from nltk.util import OrderedDict
__docformat__ = "epytext en"
######################################################################
# { Classifier Model
######################################################################
class MaxentClassifier(ClassifierI):
"""
A maximum entropy classifier (also known as a "conditional
exponential classifier"). This classifier is parameterized by a
set of "weights", which are used to combine the joint-features
that are generated from a featureset by an "encoding". In
particular, the encoding maps each ``(featureset, label)`` pair to
a vector. The probability of each label is then computed using
the following equation::
dotprod(weights, encode(fs,label))
prob(fs|label) = ---------------------------------------------------
sum(dotprod(weights, encode(fs,l)) for l in labels)
Where ``dotprod`` is the dot product::
dotprod(a,b) = sum(x*y for (x,y) in zip(a,b))
"""
def __init__(self, encoding, weights, logarithmic=True):
"""
Construct a new maxent classifier model. Typically, new
classifier models are created using the ``train()`` method.
:type encoding: MaxentFeatureEncodingI
:param encoding: An encoding that is used to convert the
featuresets that are given to the ``classify`` method into
joint-feature vectors, which are used by the maxent
classifier model.
:type weights: list of float
:param weights: The feature weight vector for this classifier.
:type logarithmic: bool
:param logarithmic: If false, then use non-logarithmic weights.
"""
self._encoding = encoding
self._weights = weights
self._logarithmic = logarithmic
# self._logarithmic = False
assert encoding.length() == len(weights)
def labels(self):
return self._encoding.labels()
def set_weights(self, new_weights):
"""
Set the feature weight vector for this classifier.
:param new_weights: The new feature weight vector.
:type new_weights: list of float
"""
self._weights = new_weights
assert self._encoding.length() == len(new_weights)
def weights(self):
"""
:return: The feature weight vector for this classifier.
:rtype: list of float
"""
return self._weights
def classify(self, featureset):
return self.prob_classify(featureset).max()
def prob_classify(self, featureset):
prob_dict = {}
for label in self._encoding.labels():
feature_vector = self._encoding.encode(featureset, label)
if self._logarithmic:
total = 0.0
for (f_id, f_val) in feature_vector:
total += self._weights[f_id] * f_val
prob_dict[label] = total
else:
prod = 1.0
for (f_id, f_val) in feature_vector:
prod *= self._weights[f_id] ** f_val
prob_dict[label] = prod
# Normalize the dictionary to give a probability distribution
return DictionaryProbDist(prob_dict, log=self._logarithmic, normalize=True)
def explain(self, featureset, columns=4):
"""
Print a table showing the effect of each of the features in
the given feature set, and how they combine to determine the
probabilities of each label for that featureset.
"""
descr_width = 50
TEMPLATE = " %-" + str(descr_width - 2) + "s%s%8.3f"
pdist = self.prob_classify(featureset)
labels = sorted(pdist.samples(), key=pdist.prob, reverse=True)
labels = labels[:columns]
print(
" Feature".ljust(descr_width)
+ "".join("%8s" % (("%s" % l)[:7]) for l in labels)
)
print(" " + "-" * (descr_width - 2 + 8 * len(labels)))
sums = defaultdict(int)
for i, label in enumerate(labels):
feature_vector = self._encoding.encode(featureset, label)
feature_vector.sort(
key=lambda fid__: abs(self._weights[fid__[0]]), reverse=True
)
for (f_id, f_val) in feature_vector:
if self._logarithmic:
score = self._weights[f_id] * f_val
else:
score = self._weights[f_id] ** f_val
descr = self._encoding.describe(f_id)
descr = descr.split(" and label is ")[0] # hack
descr += " (%s)" % f_val # hack
if len(descr) > 47:
descr = descr[:44] + "..."
print(TEMPLATE % (descr, i * 8 * " ", score))
sums[label] += score
print(" " + "-" * (descr_width - 1 + 8 * len(labels)))
print(
" TOTAL:".ljust(descr_width) + "".join("%8.3f" % sums[l] for l in labels)
)
print(
" PROBS:".ljust(descr_width)
+ "".join("%8.3f" % pdist.prob(l) for l in labels)
)
def most_informative_features(self, n=10):
"""
Generates the ranked list of informative features from most to least.
"""
if hasattr(self, "_most_informative_features"):
return self._most_informative_features[:n]
else:
self._most_informative_features = sorted(
list(range(len(self._weights))),
key=lambda fid: abs(self._weights[fid]),
reverse=True,
)
return self._most_informative_features[:n]
def show_most_informative_features(self, n=10, show="all"):
"""
:param show: all, neg, or pos (for negative-only or positive-only)
:type show: str
:param n: The no. of top features
:type n: int
"""
# Use None the full list of ranked features.
fids = self.most_informative_features(None)
if show == "pos":
fids = [fid for fid in fids if self._weights[fid] > 0]
elif show == "neg":
fids = [fid for fid in fids if self._weights[fid] < 0]
for fid in fids[:n]:
print(f"{self._weights[fid]:8.3f} {self._encoding.describe(fid)}")
def __repr__(self):
return "<ConditionalExponentialClassifier: %d labels, %d features>" % (
len(self._encoding.labels()),
self._encoding.length(),
)
#: A list of the algorithm names that are accepted for the
#: ``train()`` method's ``algorithm`` parameter.
ALGORITHMS = ["GIS", "IIS", "MEGAM", "TADM"]
@classmethod
def train(
cls,
train_toks,
algorithm=None,
trace=3,
encoding=None,
labels=None,
gaussian_prior_sigma=0,
**cutoffs,
):
"""
Train a new maxent classifier based on the given corpus of
training samples. This classifier will have its weights
chosen to maximize entropy while remaining empirically
consistent with the training corpus.
:rtype: MaxentClassifier
:return: The new maxent classifier
:type train_toks: list
:param train_toks: Training data, represented as a list of
pairs, the first member of which is a featureset,
and the second of which is a classification label.
:type algorithm: str
:param algorithm: A case-insensitive string, specifying which
algorithm should be used to train the classifier. The
following algorithms are currently available.
- Iterative Scaling Methods: Generalized Iterative Scaling (``'GIS'``),
Improved Iterative Scaling (``'IIS'``)
- External Libraries (requiring megam):
LM-BFGS algorithm, with training performed by Megam (``'megam'``)
The default algorithm is ``'IIS'``.
:type trace: int
:param trace: The level of diagnostic tracing output to produce.
Higher values produce more verbose output.
:type encoding: MaxentFeatureEncodingI
:param encoding: A feature encoding, used to convert featuresets
into feature vectors. If none is specified, then a
``BinaryMaxentFeatureEncoding`` will be built based on the
features that are attested in the training corpus.
:type labels: list(str)
:param labels: The set of possible labels. If none is given, then
the set of all labels attested in the training data will be
used instead.
:param gaussian_prior_sigma: The sigma value for a gaussian
prior on model weights. Currently, this is supported by
``megam``. For other algorithms, its value is ignored.
:param cutoffs: Arguments specifying various conditions under
which the training should be halted. (Some of the cutoff
conditions are not supported by some algorithms.)
- ``max_iter=v``: Terminate after ``v`` iterations.
- ``min_ll=v``: Terminate after the negative average
log-likelihood drops under ``v``.
- ``min_lldelta=v``: Terminate if a single iteration improves
log likelihood by less than ``v``.
"""
if algorithm is None:
algorithm = "iis"
for key in cutoffs:
if key not in (
"max_iter",
"min_ll",
"min_lldelta",
"max_acc",
"min_accdelta",
"count_cutoff",
"norm",
"explicit",
"bernoulli",
):
raise TypeError("Unexpected keyword arg %r" % key)
algorithm = algorithm.lower()
if algorithm == "iis":
return train_maxent_classifier_with_iis(
train_toks, trace, encoding, labels, **cutoffs
)
elif algorithm == "gis":
return train_maxent_classifier_with_gis(
train_toks, trace, encoding, labels, **cutoffs
)
elif algorithm == "megam":
return train_maxent_classifier_with_megam(
train_toks, trace, encoding, labels, gaussian_prior_sigma, **cutoffs
)
elif algorithm == "tadm":
kwargs = cutoffs
kwargs["trace"] = trace
kwargs["encoding"] = encoding
kwargs["labels"] = labels
kwargs["gaussian_prior_sigma"] = gaussian_prior_sigma
return TadmMaxentClassifier.train(train_toks, **kwargs)
else:
raise ValueError("Unknown algorithm %s" % algorithm)
#: Alias for MaxentClassifier.
ConditionalExponentialClassifier = MaxentClassifier
######################################################################
# { Feature Encodings
######################################################################
class MaxentFeatureEncodingI:
"""
A mapping that converts a set of input-feature values to a vector
of joint-feature values, given a label. This conversion is
necessary to translate featuresets into a format that can be used
by maximum entropy models.
The set of joint-features used by a given encoding is fixed, and
each index in the generated joint-feature vectors corresponds to a
single joint-feature. The length of the generated joint-feature
vectors is therefore constant (for a given encoding).
Because the joint-feature vectors generated by
``MaxentFeatureEncodingI`` are typically very sparse, they are
represented as a list of ``(index, value)`` tuples, specifying the
value of each non-zero joint-feature.
Feature encodings are generally created using the ``train()``
method, which generates an appropriate encoding based on the
input-feature values and labels that are present in a given
corpus.
"""
def encode(self, featureset, label):
"""
Given a (featureset, label) pair, return the corresponding
vector of joint-feature values. This vector is represented as
a list of ``(index, value)`` tuples, specifying the value of
each non-zero joint-feature.
:type featureset: dict
:rtype: list(tuple(int, int))
"""
raise NotImplementedError()
def length(self):
"""
:return: The size of the fixed-length joint-feature vectors
that are generated by this encoding.
:rtype: int
"""
raise NotImplementedError()
def labels(self):
"""
:return: A list of the \"known labels\" -- i.e., all labels
``l`` such that ``self.encode(fs,l)`` can be a nonzero
joint-feature vector for some value of ``fs``.
:rtype: list
"""
raise NotImplementedError()
def describe(self, fid):
"""
:return: A string describing the value of the joint-feature
whose index in the generated feature vectors is ``fid``.
:rtype: str
"""
raise NotImplementedError()
def train(cls, train_toks):
"""
Construct and return new feature encoding, based on a given
training corpus ``train_toks``.
:type train_toks: list(tuple(dict, str))
:param train_toks: Training data, represented as a list of
pairs, the first member of which is a feature dictionary,
and the second of which is a classification label.
"""
raise NotImplementedError()
class FunctionBackedMaxentFeatureEncoding(MaxentFeatureEncodingI):
"""
A feature encoding that calls a user-supplied function to map a
given featureset/label pair to a sparse joint-feature vector.
"""
def __init__(self, func, length, labels):
"""
Construct a new feature encoding based on the given function.
:type func: (callable)
:param func: A function that takes two arguments, a featureset
and a label, and returns the sparse joint feature vector
that encodes them::
func(featureset, label) -> feature_vector
This sparse joint feature vector (``feature_vector``) is a
list of ``(index,value)`` tuples.
:type length: int
:param length: The size of the fixed-length joint-feature
vectors that are generated by this encoding.
:type labels: list
:param labels: A list of the \"known labels\" for this
encoding -- i.e., all labels ``l`` such that
``self.encode(fs,l)`` can be a nonzero joint-feature vector
for some value of ``fs``.
"""
self._length = length
self._func = func
self._labels = labels
def encode(self, featureset, label):
return self._func(featureset, label)
def length(self):
return self._length
def labels(self):
return self._labels
def describe(self, fid):
return "no description available"
class BinaryMaxentFeatureEncoding(MaxentFeatureEncodingI):
"""
A feature encoding that generates vectors containing a binary
joint-features of the form:
| joint_feat(fs, l) = { 1 if (fs[fname] == fval) and (l == label)
| {
| { 0 otherwise
Where ``fname`` is the name of an input-feature, ``fval`` is a value
for that input-feature, and ``label`` is a label.
Typically, these features are constructed based on a training
corpus, using the ``train()`` method. This method will create one
feature for each combination of ``fname``, ``fval``, and ``label``
that occurs at least once in the training corpus.
The ``unseen_features`` parameter can be used to add "unseen-value
features", which are used whenever an input feature has a value
that was not encountered in the training corpus. These features
have the form:
| joint_feat(fs, l) = { 1 if is_unseen(fname, fs[fname])
| { and l == label
| {
| { 0 otherwise
Where ``is_unseen(fname, fval)`` is true if the encoding does not
contain any joint features that are true when ``fs[fname]==fval``.
The ``alwayson_features`` parameter can be used to add "always-on
features", which have the form::
| joint_feat(fs, l) = { 1 if (l == label)
| {
| { 0 otherwise
These always-on features allow the maxent model to directly model
the prior probabilities of each label.
"""
def __init__(self, labels, mapping, unseen_features=False, alwayson_features=False):
"""
:param labels: A list of the \"known labels\" for this encoding.
:param mapping: A dictionary mapping from ``(fname,fval,label)``
tuples to corresponding joint-feature indexes. These
indexes must be the set of integers from 0...len(mapping).
If ``mapping[fname,fval,label]=id``, then
``self.encode(..., fname:fval, ..., label)[id]`` is 1;
otherwise, it is 0.
:param unseen_features: If true, then include unseen value
features in the generated joint-feature vectors.
:param alwayson_features: If true, then include always-on
features in the generated joint-feature vectors.
"""
if set(mapping.values()) != set(range(len(mapping))):
raise ValueError(
"Mapping values must be exactly the "
"set of integers from 0...len(mapping)"
)
self._labels = list(labels)
"""A list of attested labels."""
self._mapping = mapping
"""dict mapping from (fname,fval,label) -> fid"""
self._length = len(mapping)
"""The length of generated joint feature vectors."""
self._alwayson = None
"""dict mapping from label -> fid"""
self._unseen = None
"""dict mapping from fname -> fid"""
if alwayson_features:
self._alwayson = {
label: i + self._length for (i, label) in enumerate(labels)
}
self._length += len(self._alwayson)
if unseen_features:
fnames = {fname for (fname, fval, label) in mapping}
self._unseen = {fname: i + self._length for (i, fname) in enumerate(fnames)}
self._length += len(fnames)
def encode(self, featureset, label):
# Inherit docs.
encoding = []
# Convert input-features to joint-features:
for fname, fval in featureset.items():
# Known feature name & value:
if (fname, fval, label) in self._mapping:
encoding.append((self._mapping[fname, fval, label], 1))
# Otherwise, we might want to fire an "unseen-value feature".
elif self._unseen:
# Have we seen this fname/fval combination with any label?
for label2 in self._labels:
if (fname, fval, label2) in self._mapping:
break # we've seen this fname/fval combo
# We haven't -- fire the unseen-value feature
else:
if fname in self._unseen:
encoding.append((self._unseen[fname], 1))
# Add always-on features:
if self._alwayson and label in self._alwayson:
encoding.append((self._alwayson[label], 1))
return encoding
def describe(self, f_id):
# Inherit docs.
if not isinstance(f_id, int):
raise TypeError("describe() expected an int")
try:
self._inv_mapping
except AttributeError:
self._inv_mapping = [-1] * len(self._mapping)
for (info, i) in self._mapping.items():
self._inv_mapping[i] = info
if f_id < len(self._mapping):
(fname, fval, label) = self._inv_mapping[f_id]
return f"{fname}=={fval!r} and label is {label!r}"
elif self._alwayson and f_id in self._alwayson.values():
for (label, f_id2) in self._alwayson.items():
if f_id == f_id2:
return "label is %r" % label
elif self._unseen and f_id in self._unseen.values():
for (fname, f_id2) in self._unseen.items():
if f_id == f_id2:
return "%s is unseen" % fname
else:
raise ValueError("Bad feature id")
def labels(self):
# Inherit docs.
return self._labels
def length(self):
# Inherit docs.
return self._length
@classmethod
def train(cls, train_toks, count_cutoff=0, labels=None, **options):
"""
Construct and return new feature encoding, based on a given
training corpus ``train_toks``. See the class description
``BinaryMaxentFeatureEncoding`` for a description of the
joint-features that will be included in this encoding.
:type train_toks: list(tuple(dict, str))
:param train_toks: Training data, represented as a list of
pairs, the first member of which is a feature dictionary,
and the second of which is a classification label.
:type count_cutoff: int
:param count_cutoff: A cutoff value that is used to discard
rare joint-features. If a joint-feature's value is 1
fewer than ``count_cutoff`` times in the training corpus,
then that joint-feature is not included in the generated
encoding.
:type labels: list
:param labels: A list of labels that should be used by the
classifier. If not specified, then the set of labels
attested in ``train_toks`` will be used.
:param options: Extra parameters for the constructor, such as
``unseen_features`` and ``alwayson_features``.
"""
mapping = {} # maps (fname, fval, label) -> fid
seen_labels = set() # The set of labels we've encountered
count = defaultdict(int) # maps (fname, fval) -> count
for (tok, label) in train_toks:
if labels and label not in labels:
raise ValueError("Unexpected label %s" % label)
seen_labels.add(label)
# Record each of the features.
for (fname, fval) in tok.items():
# If a count cutoff is given, then only add a joint
# feature once the corresponding (fname, fval, label)
# tuple exceeds that cutoff.
count[fname, fval] += 1
if count[fname, fval] >= count_cutoff:
if (fname, fval, label) not in mapping:
mapping[fname, fval, label] = len(mapping)
if labels is None:
labels = seen_labels
return cls(labels, mapping, **options)
class GISEncoding(BinaryMaxentFeatureEncoding):
"""
A binary feature encoding which adds one new joint-feature to the
joint-features defined by ``BinaryMaxentFeatureEncoding``: a
correction feature, whose value is chosen to ensure that the
sparse vector always sums to a constant non-negative number. This
new feature is used to ensure two preconditions for the GIS
training algorithm:
- At least one feature vector index must be nonzero for every
token.
- The feature vector must sum to a constant non-negative number
for every token.
"""
def __init__(
self, labels, mapping, unseen_features=False, alwayson_features=False, C=None
):
"""
:param C: The correction constant. The value of the correction
feature is based on this value. In particular, its value is
``C - sum([v for (f,v) in encoding])``.
:seealso: ``BinaryMaxentFeatureEncoding.__init__``
"""
BinaryMaxentFeatureEncoding.__init__(
self, labels, mapping, unseen_features, alwayson_features
)
if C is None:
C = len({fname for (fname, fval, label) in mapping}) + 1
self._C = C
@property
def C(self):
"""The non-negative constant that all encoded feature vectors
will sum to."""
return self._C
def encode(self, featureset, label):
# Get the basic encoding.
encoding = BinaryMaxentFeatureEncoding.encode(self, featureset, label)
base_length = BinaryMaxentFeatureEncoding.length(self)
# Add a correction feature.
total = sum(v for (f, v) in encoding)
if total >= self._C:
raise ValueError("Correction feature is not high enough!")
encoding.append((base_length, self._C - total))
# Return the result
return encoding
def length(self):
return BinaryMaxentFeatureEncoding.length(self) + 1
def describe(self, f_id):
if f_id == BinaryMaxentFeatureEncoding.length(self):
return "Correction feature (%s)" % self._C
else:
return BinaryMaxentFeatureEncoding.describe(self, f_id)
class TadmEventMaxentFeatureEncoding(BinaryMaxentFeatureEncoding):
def __init__(self, labels, mapping, unseen_features=False, alwayson_features=False):
self._mapping = OrderedDict(mapping)
self._label_mapping = OrderedDict()
BinaryMaxentFeatureEncoding.__init__(
self, labels, self._mapping, unseen_features, alwayson_features
)
def encode(self, featureset, label):
encoding = []
for feature, value in featureset.items():
if (feature, label) not in self._mapping:
self._mapping[(feature, label)] = len(self._mapping)
if value not in self._label_mapping:
if not isinstance(value, int):
self._label_mapping[value] = len(self._label_mapping)
else:
self._label_mapping[value] = value
encoding.append(
(self._mapping[(feature, label)], self._label_mapping[value])
)
return encoding
def labels(self):
return self._labels
def describe(self, fid):
for (feature, label) in self._mapping:
if self._mapping[(feature, label)] == fid:
return (feature, label)
def length(self):
return len(self._mapping)
@classmethod
def train(cls, train_toks, count_cutoff=0, labels=None, **options):
mapping = OrderedDict()
if not labels:
labels = []
# This gets read twice, so compute the values in case it's lazy.
train_toks = list(train_toks)
for (featureset, label) in train_toks:
if label not in labels:
labels.append(label)
for (featureset, label) in train_toks:
for label in labels:
for feature in featureset:
if (feature, label) not in mapping:
mapping[(feature, label)] = len(mapping)
return cls(labels, mapping, **options)
class TypedMaxentFeatureEncoding(MaxentFeatureEncodingI):
"""
A feature encoding that generates vectors containing integer,
float and binary joint-features of the form:
Binary (for string and boolean features):
| joint_feat(fs, l) = { 1 if (fs[fname] == fval) and (l == label)
| {
| { 0 otherwise
Value (for integer and float features):
| joint_feat(fs, l) = { fval if (fs[fname] == type(fval))
| { and (l == label)
| {
| { not encoded otherwise
Where ``fname`` is the name of an input-feature, ``fval`` is a value
for that input-feature, and ``label`` is a label.
Typically, these features are constructed based on a training
corpus, using the ``train()`` method.
For string and boolean features [type(fval) not in (int, float)]
this method will create one feature for each combination of
``fname``, ``fval``, and ``label`` that occurs at least once in the
training corpus.
For integer and float features [type(fval) in (int, float)] this
method will create one feature for each combination of ``fname``
and ``label`` that occurs at least once in the training corpus.
For binary features the ``unseen_features`` parameter can be used
to add "unseen-value features", which are used whenever an input
feature has a value that was not encountered in the training
corpus. These features have the form:
| joint_feat(fs, l) = { 1 if is_unseen(fname, fs[fname])
| { and l == label
| {
| { 0 otherwise
Where ``is_unseen(fname, fval)`` is true if the encoding does not
contain any joint features that are true when ``fs[fname]==fval``.
The ``alwayson_features`` parameter can be used to add "always-on
features", which have the form:
| joint_feat(fs, l) = { 1 if (l == label)
| {
| { 0 otherwise
These always-on features allow the maxent model to directly model
the prior probabilities of each label.
"""
def __init__(self, labels, mapping, unseen_features=False, alwayson_features=False):
"""
:param labels: A list of the \"known labels\" for this encoding.
:param mapping: A dictionary mapping from ``(fname,fval,label)``
tuples to corresponding joint-feature indexes. These
indexes must be the set of integers from 0...len(mapping).
If ``mapping[fname,fval,label]=id``, then
``self.encode({..., fname:fval, ...``, label)[id]} is 1;
otherwise, it is 0.
:param unseen_features: If true, then include unseen value
features in the generated joint-feature vectors.
:param alwayson_features: If true, then include always-on
features in the generated joint-feature vectors.
"""
if set(mapping.values()) != set(range(len(mapping))):
raise ValueError(
"Mapping values must be exactly the "
"set of integers from 0...len(mapping)"
)
self._labels = list(labels)
"""A list of attested labels."""
self._mapping = mapping
"""dict mapping from (fname,fval,label) -> fid"""
self._length = len(mapping)
"""The length of generated joint feature vectors."""
self._alwayson = None
"""dict mapping from label -> fid"""
self._unseen = None
"""dict mapping from fname -> fid"""
if alwayson_features:
self._alwayson = {
label: i + self._length for (i, label) in enumerate(labels)
}
self._length += len(self._alwayson)
if unseen_features:
fnames = {fname for (fname, fval, label) in mapping}
self._unseen = {fname: i + self._length for (i, fname) in enumerate(fnames)}
self._length += len(fnames)
def encode(self, featureset, label):
# Inherit docs.
encoding = []
# Convert input-features to joint-features:
for fname, fval in featureset.items():
if isinstance(fval, (int, float)):
# Known feature name & value:
if (fname, type(fval), label) in self._mapping:
encoding.append((self._mapping[fname, type(fval), label], fval))
else:
# Known feature name & value:
if (fname, fval, label) in self._mapping:
encoding.append((self._mapping[fname, fval, label], 1))
# Otherwise, we might want to fire an "unseen-value feature".
elif self._unseen:
# Have we seen this fname/fval combination with any label?
for label2 in self._labels:
if (fname, fval, label2) in self._mapping:
break # we've seen this fname/fval combo
# We haven't -- fire the unseen-value feature
else:
if fname in self._unseen:
encoding.append((self._unseen[fname], 1))
# Add always-on features:
if self._alwayson and label in self._alwayson:
encoding.append((self._alwayson[label], 1))
return encoding
def describe(self, f_id):
# Inherit docs.
if not isinstance(f_id, int):
raise TypeError("describe() expected an int")
try:
self._inv_mapping
except AttributeError:
self._inv_mapping = [-1] * len(self._mapping)
for (info, i) in self._mapping.items():
self._inv_mapping[i] = info
if f_id < len(self._mapping):
(fname, fval, label) = self._inv_mapping[f_id]
return f"{fname}=={fval!r} and label is {label!r}"
elif self._alwayson and f_id in self._alwayson.values():
for (label, f_id2) in self._alwayson.items():
if f_id == f_id2:
return "label is %r" % label
elif self._unseen and f_id in self._unseen.values():
for (fname, f_id2) in self._unseen.items():
if f_id == f_id2:
return "%s is unseen" % fname
else:
raise ValueError("Bad feature id")
def labels(self):
# Inherit docs.
return self._labels
def length(self):
# Inherit docs.
return self._length
@classmethod
def train(cls, train_toks, count_cutoff=0, labels=None, **options):
"""
Construct and return new feature encoding, based on a given
training corpus ``train_toks``. See the class description
``TypedMaxentFeatureEncoding`` for a description of the
joint-features that will be included in this encoding.
Note: recognized feature values types are (int, float), over
types are interpreted as regular binary features.
:type train_toks: list(tuple(dict, str))
:param train_toks: Training data, represented as a list of
pairs, the first member of which is a feature dictionary,
and the second of which is a classification label.
:type count_cutoff: int
:param count_cutoff: A cutoff value that is used to discard
rare joint-features. If a joint-feature's value is 1
fewer than ``count_cutoff`` times in the training corpus,
then that joint-feature is not included in the generated
encoding.
:type labels: list
:param labels: A list of labels that should be used by the
classifier. If not specified, then the set of labels
attested in ``train_toks`` will be used.
:param options: Extra parameters for the constructor, such as
``unseen_features`` and ``alwayson_features``.
"""
mapping = {} # maps (fname, fval, label) -> fid
seen_labels = set() # The set of labels we've encountered
count = defaultdict(int) # maps (fname, fval) -> count
for (tok, label) in train_toks:
if labels and label not in labels:
raise ValueError("Unexpected label %s" % label)
seen_labels.add(label)
# Record each of the features.
for (fname, fval) in tok.items():
if type(fval) in (int, float):
fval = type(fval)
# If a count cutoff is given, then only add a joint
# feature once the corresponding (fname, fval, label)
# tuple exceeds that cutoff.
count[fname, fval] += 1
if count[fname, fval] >= count_cutoff:
if (fname, fval, label) not in mapping:
mapping[fname, fval, label] = len(mapping)
if labels is None:
labels = seen_labels
return cls(labels, mapping, **options)
######################################################################
# { Classifier Trainer: Generalized Iterative Scaling
######################################################################
def train_maxent_classifier_with_gis(
train_toks, trace=3, encoding=None, labels=None, **cutoffs
):
"""
Train a new ``ConditionalExponentialClassifier``, using the given
training samples, using the Generalized Iterative Scaling
algorithm. This ``ConditionalExponentialClassifier`` will encode
the model that maximizes entropy from all the models that are
empirically consistent with ``train_toks``.
:see: ``train_maxent_classifier()`` for parameter descriptions.
"""
cutoffs.setdefault("max_iter", 100)
cutoffchecker = CutoffChecker(cutoffs)
# Construct an encoding from the training data.
if encoding is None:
encoding = GISEncoding.train(train_toks, labels=labels)
if not hasattr(encoding, "C"):
raise TypeError(
"The GIS algorithm requires an encoding that "
"defines C (e.g., GISEncoding)."
)
# Cinv is the inverse of the sum of each joint feature vector.
# This controls the learning rate: higher Cinv (or lower C) gives
# faster learning.
Cinv = 1.0 / encoding.C
# Count how many times each feature occurs in the training data.
empirical_fcount = calculate_empirical_fcount(train_toks, encoding)
# Check for any features that are not attested in train_toks.
unattested = set(numpy.nonzero(empirical_fcount == 0)[0])
# Build the classifier. Start with weight=0 for each attested
# feature, and weight=-infinity for each unattested feature.
weights = numpy.zeros(len(empirical_fcount), "d")
for fid in unattested:
weights[fid] = numpy.NINF
classifier = ConditionalExponentialClassifier(encoding, weights)
# Take the log of the empirical fcount.
log_empirical_fcount = numpy.log2(empirical_fcount)
del empirical_fcount
if trace > 0:
print(" ==> Training (%d iterations)" % cutoffs["max_iter"])
if trace > 2:
print()
print(" Iteration Log Likelihood Accuracy")
print(" ---------------------------------------")
# Train the classifier.
try:
while True:
if trace > 2:
ll = cutoffchecker.ll or log_likelihood(classifier, train_toks)
acc = cutoffchecker.acc or accuracy(classifier, train_toks)
iternum = cutoffchecker.iter
print(" %9d %14.5f %9.3f" % (iternum, ll, acc))
# Use the model to estimate the number of times each
# feature should occur in the training data.
estimated_fcount = calculate_estimated_fcount(
classifier, train_toks, encoding
)
# Take the log of estimated fcount (avoid taking log(0).)
for fid in unattested:
estimated_fcount[fid] += 1
log_estimated_fcount = numpy.log2(estimated_fcount)
del estimated_fcount
# Update the classifier weights
weights = classifier.weights()
weights += (log_empirical_fcount - log_estimated_fcount) * Cinv
classifier.set_weights(weights)
# Check the log-likelihood & accuracy cutoffs.
if cutoffchecker.check(classifier, train_toks):
break
except KeyboardInterrupt:
print(" Training stopped: keyboard interrupt")
except:
raise
if trace > 2:
ll = log_likelihood(classifier, train_toks)
acc = accuracy(classifier, train_toks)
print(f" Final {ll:14.5f} {acc:9.3f}")
# Return the classifier.
return classifier
def calculate_empirical_fcount(train_toks, encoding):
fcount = numpy.zeros(encoding.length(), "d")
for tok, label in train_toks:
for (index, val) in encoding.encode(tok, label):
fcount[index] += val
return fcount
def calculate_estimated_fcount(classifier, train_toks, encoding):
fcount = numpy.zeros(encoding.length(), "d")
for tok, label in train_toks:
pdist = classifier.prob_classify(tok)
for label in pdist.samples():
prob = pdist.prob(label)
for (fid, fval) in encoding.encode(tok, label):
fcount[fid] += prob * fval
return fcount
######################################################################
# { Classifier Trainer: Improved Iterative Scaling
######################################################################
def train_maxent_classifier_with_iis(
train_toks, trace=3, encoding=None, labels=None, **cutoffs
):
"""
Train a new ``ConditionalExponentialClassifier``, using the given
training samples, using the Improved Iterative Scaling algorithm.
This ``ConditionalExponentialClassifier`` will encode the model
that maximizes entropy from all the models that are empirically
consistent with ``train_toks``.
:see: ``train_maxent_classifier()`` for parameter descriptions.
"""
cutoffs.setdefault("max_iter", 100)
cutoffchecker = CutoffChecker(cutoffs)
# Construct an encoding from the training data.
if encoding is None:
encoding = BinaryMaxentFeatureEncoding.train(train_toks, labels=labels)
# Count how many times each feature occurs in the training data.
empirical_ffreq = calculate_empirical_fcount(train_toks, encoding) / len(train_toks)
# Find the nf map, and related variables nfarray and nfident.
# nf is the sum of the features for a given labeled text.
# nfmap compresses this sparse set of values to a dense list.
# nfarray performs the reverse operation. nfident is
# nfarray multiplied by an identity matrix.
nfmap = calculate_nfmap(train_toks, encoding)
nfarray = numpy.array(sorted(nfmap, key=nfmap.__getitem__), "d")
nftranspose = numpy.reshape(nfarray, (len(nfarray), 1))
# Check for any features that are not attested in train_toks.
unattested = set(numpy.nonzero(empirical_ffreq == 0)[0])
# Build the classifier. Start with weight=0 for each attested
# feature, and weight=-infinity for each unattested feature.
weights = numpy.zeros(len(empirical_ffreq), "d")
for fid in unattested:
weights[fid] = numpy.NINF
classifier = ConditionalExponentialClassifier(encoding, weights)
if trace > 0:
print(" ==> Training (%d iterations)" % cutoffs["max_iter"])
if trace > 2:
print()
print(" Iteration Log Likelihood Accuracy")
print(" ---------------------------------------")
# Train the classifier.
try:
while True:
if trace > 2:
ll = cutoffchecker.ll or log_likelihood(classifier, train_toks)
acc = cutoffchecker.acc or accuracy(classifier, train_toks)
iternum = cutoffchecker.iter
print(" %9d %14.5f %9.3f" % (iternum, ll, acc))
# Calculate the deltas for this iteration, using Newton's method.
deltas = calculate_deltas(
train_toks,
classifier,
unattested,
empirical_ffreq,
nfmap,
nfarray,
nftranspose,
encoding,
)
# Use the deltas to update our weights.
weights = classifier.weights()
weights += deltas
classifier.set_weights(weights)
# Check the log-likelihood & accuracy cutoffs.
if cutoffchecker.check(classifier, train_toks):
break
except KeyboardInterrupt:
print(" Training stopped: keyboard interrupt")
except:
raise
if trace > 2:
ll = log_likelihood(classifier, train_toks)
acc = accuracy(classifier, train_toks)
print(f" Final {ll:14.5f} {acc:9.3f}")
# Return the classifier.
return classifier
def calculate_nfmap(train_toks, encoding):
"""
Construct a map that can be used to compress ``nf`` (which is
typically sparse).
*nf(feature_vector)* is the sum of the feature values for
*feature_vector*.
This represents the number of features that are active for a
given labeled text. This method finds all values of *nf(t)*
that are attested for at least one token in the given list of
training tokens; and constructs a dictionary mapping these
attested values to a continuous range *0...N*. For example,
if the only values of *nf()* that were attested were 3, 5, and
7, then ``_nfmap`` might return the dictionary ``{3:0, 5:1, 7:2}``.
:return: A map that can be used to compress ``nf`` to a dense
vector.
:rtype: dict(int -> int)
"""
# Map from nf to indices. This allows us to use smaller arrays.
nfset = set()
for tok, _ in train_toks:
for label in encoding.labels():
nfset.add(sum(val for (id, val) in encoding.encode(tok, label)))
return {nf: i for (i, nf) in enumerate(nfset)}
def calculate_deltas(
train_toks,
classifier,
unattested,
ffreq_empirical,
nfmap,
nfarray,
nftranspose,
encoding,
):
r"""
Calculate the update values for the classifier weights for
this iteration of IIS. These update weights are the value of
``delta`` that solves the equation::
ffreq_empirical[i]
=
SUM[fs,l] (classifier.prob_classify(fs).prob(l) *
feature_vector(fs,l)[i] *
exp(delta[i] * nf(feature_vector(fs,l))))
Where:
- *(fs,l)* is a (featureset, label) tuple from ``train_toks``
- *feature_vector(fs,l)* = ``encoding.encode(fs,l)``
- *nf(vector)* = ``sum([val for (id,val) in vector])``
This method uses Newton's method to solve this equation for
*delta[i]*. In particular, it starts with a guess of
``delta[i]`` = 1; and iteratively updates ``delta`` with:
| delta[i] -= (ffreq_empirical[i] - sum1[i])/(-sum2[i])
until convergence, where *sum1* and *sum2* are defined as:
| sum1[i](delta) = SUM[fs,l] f[i](fs,l,delta)
| sum2[i](delta) = SUM[fs,l] (f[i](fs,l,delta).nf(feature_vector(fs,l)))
| f[i](fs,l,delta) = (classifier.prob_classify(fs).prob(l) .
| feature_vector(fs,l)[i] .
| exp(delta[i] . nf(feature_vector(fs,l))))
Note that *sum1* and *sum2* depend on ``delta``; so they need
to be re-computed each iteration.
The variables ``nfmap``, ``nfarray``, and ``nftranspose`` are
used to generate a dense encoding for *nf(ltext)*. This
allows ``_deltas`` to calculate *sum1* and *sum2* using
matrices, which yields a significant performance improvement.
:param train_toks: The set of training tokens.
:type train_toks: list(tuple(dict, str))
:param classifier: The current classifier.
:type classifier: ClassifierI
:param ffreq_empirical: An array containing the empirical
frequency for each feature. The *i*\ th element of this
array is the empirical frequency for feature *i*.
:type ffreq_empirical: sequence of float
:param unattested: An array that is 1 for features that are
not attested in the training data; and 0 for features that
are attested. In other words, ``unattested[i]==0`` iff
``ffreq_empirical[i]==0``.
:type unattested: sequence of int
:param nfmap: A map that can be used to compress ``nf`` to a dense
vector.
:type nfmap: dict(int -> int)
:param nfarray: An array that can be used to uncompress ``nf``
from a dense vector.
:type nfarray: array(float)
:param nftranspose: The transpose of ``nfarray``
:type nftranspose: array(float)
"""
# These parameters control when we decide that we've
# converged. It probably should be possible to set these
# manually, via keyword arguments to train.
NEWTON_CONVERGE = 1e-12
MAX_NEWTON = 300
deltas = numpy.ones(encoding.length(), "d")
# Precompute the A matrix:
# A[nf][id] = sum ( p(fs) * p(label|fs) * f(fs,label) )
# over all label,fs s.t. num_features[label,fs]=nf
A = numpy.zeros((len(nfmap), encoding.length()), "d")
for tok, label in train_toks:
dist = classifier.prob_classify(tok)
for label in encoding.labels():
# Generate the feature vector
feature_vector = encoding.encode(tok, label)
# Find the number of active features
nf = sum(val for (id, val) in feature_vector)
# Update the A matrix
for (id, val) in feature_vector:
A[nfmap[nf], id] += dist.prob(label) * val
A /= len(train_toks)
# Iteratively solve for delta. Use the following variables:
# - nf_delta[x][y] = nfarray[x] * delta[y]
# - exp_nf_delta[x][y] = exp(nf[x] * delta[y])
# - nf_exp_nf_delta[x][y] = nf[x] * exp(nf[x] * delta[y])
# - sum1[i][nf] = sum p(fs)p(label|fs)f[i](label,fs)
# exp(delta[i]nf)
# - sum2[i][nf] = sum p(fs)p(label|fs)f[i](label,fs)
# nf exp(delta[i]nf)
for rangenum in range(MAX_NEWTON):
nf_delta = numpy.outer(nfarray, deltas)
exp_nf_delta = 2**nf_delta
nf_exp_nf_delta = nftranspose * exp_nf_delta
sum1 = numpy.sum(exp_nf_delta * A, axis=0)
sum2 = numpy.sum(nf_exp_nf_delta * A, axis=0)
# Avoid division by zero.
for fid in unattested:
sum2[fid] += 1
# Update the deltas.
deltas -= (ffreq_empirical - sum1) / -sum2
# We can stop once we converge.
n_error = numpy.sum(abs(ffreq_empirical - sum1)) / numpy.sum(abs(deltas))
if n_error < NEWTON_CONVERGE:
return deltas
return deltas
######################################################################
# { Classifier Trainer: megam
######################################################################
# [xx] possible extension: add support for using implicit file format;
# this would need to put requirements on what encoding is used. But
# we may need this for other maxent classifier trainers that require
# implicit formats anyway.
def train_maxent_classifier_with_megam(
train_toks, trace=3, encoding=None, labels=None, gaussian_prior_sigma=0, **kwargs
):
"""
Train a new ``ConditionalExponentialClassifier``, using the given
training samples, using the external ``megam`` library. This
``ConditionalExponentialClassifier`` will encode the model that
maximizes entropy from all the models that are empirically
consistent with ``train_toks``.
:see: ``train_maxent_classifier()`` for parameter descriptions.
:see: ``nltk.classify.megam``
"""
explicit = True
bernoulli = True
if "explicit" in kwargs:
explicit = kwargs["explicit"]
if "bernoulli" in kwargs:
bernoulli = kwargs["bernoulli"]
# Construct an encoding from the training data.
if encoding is None:
# Count cutoff can also be controlled by megam with the -minfc
# option. Not sure where the best place for it is.
count_cutoff = kwargs.get("count_cutoff", 0)
encoding = BinaryMaxentFeatureEncoding.train(
train_toks, count_cutoff, labels=labels, alwayson_features=True
)
elif labels is not None:
raise ValueError("Specify encoding or labels, not both")
# Write a training file for megam.
try:
fd, trainfile_name = tempfile.mkstemp(prefix="nltk-")
with open(trainfile_name, "w") as trainfile:
write_megam_file(
train_toks, encoding, trainfile, explicit=explicit, bernoulli=bernoulli
)
os.close(fd)
except (OSError, ValueError) as e:
raise ValueError("Error while creating megam training file: %s" % e) from e
# Run megam on the training file.
options = []
options += ["-nobias", "-repeat", "10"]
if explicit:
options += ["-explicit"]
if not bernoulli:
options += ["-fvals"]
if gaussian_prior_sigma:
# Lambda is just the precision of the Gaussian prior, i.e. it's the
# inverse variance, so the parameter conversion is 1.0/sigma**2.
# See https://users.umiacs.umd.edu/~hal/docs/daume04cg-bfgs.pdf
inv_variance = 1.0 / gaussian_prior_sigma**2
else:
inv_variance = 0
options += ["-lambda", "%.2f" % inv_variance, "-tune"]
if trace < 3:
options += ["-quiet"]
if "max_iter" in kwargs:
options += ["-maxi", "%s" % kwargs["max_iter"]]
if "ll_delta" in kwargs:
# [xx] this is actually a perplexity delta, not a log
# likelihood delta
options += ["-dpp", "%s" % abs(kwargs["ll_delta"])]
if hasattr(encoding, "cost"):
options += ["-multilabel"] # each possible la
options += ["multiclass", trainfile_name]
stdout = call_megam(options)
# print('./megam_i686.opt ', ' '.join(options))
# Delete the training file
try:
os.remove(trainfile_name)
except OSError as e:
print(f"Warning: unable to delete {trainfile_name}: {e}")
# Parse the generated weight vector.
weights = parse_megam_weights(stdout, encoding.length(), explicit)
# Convert from base-e to base-2 weights.
weights *= numpy.log2(numpy.e)
# Build the classifier
return MaxentClassifier(encoding, weights)
######################################################################
# { Classifier Trainer: tadm
######################################################################
class TadmMaxentClassifier(MaxentClassifier):
@classmethod
def train(cls, train_toks, **kwargs):
algorithm = kwargs.get("algorithm", "tao_lmvm")
trace = kwargs.get("trace", 3)
encoding = kwargs.get("encoding", None)
labels = kwargs.get("labels", None)
sigma = kwargs.get("gaussian_prior_sigma", 0)
count_cutoff = kwargs.get("count_cutoff", 0)
max_iter = kwargs.get("max_iter")
ll_delta = kwargs.get("min_lldelta")
# Construct an encoding from the training data.
if not encoding:
encoding = TadmEventMaxentFeatureEncoding.train(
train_toks, count_cutoff, labels=labels
)
trainfile_fd, trainfile_name = tempfile.mkstemp(
prefix="nltk-tadm-events-", suffix=".gz"
)
weightfile_fd, weightfile_name = tempfile.mkstemp(prefix="nltk-tadm-weights-")
trainfile = gzip_open_unicode(trainfile_name, "w")
write_tadm_file(train_toks, encoding, trainfile)
trainfile.close()
options = []
options.extend(["-monitor"])
options.extend(["-method", algorithm])
if sigma:
options.extend(["-l2", "%.6f" % sigma**2])
if max_iter:
options.extend(["-max_it", "%d" % max_iter])
if ll_delta:
options.extend(["-fatol", "%.6f" % abs(ll_delta)])
options.extend(["-events_in", trainfile_name])
options.extend(["-params_out", weightfile_name])
if trace < 3:
options.extend(["2>&1"])
else:
options.extend(["-summary"])
call_tadm(options)
with open(weightfile_name) as weightfile:
weights = parse_tadm_weights(weightfile)
os.remove(trainfile_name)
os.remove(weightfile_name)
# Convert from base-e to base-2 weights.
weights *= numpy.log2(numpy.e)
# Build the classifier
return cls(encoding, weights)
######################################################################
# { Demo
######################################################################
def demo():
from nltk.classify.util import names_demo
classifier = names_demo(MaxentClassifier.train)
if __name__ == "__main__":
demo()
|