File size: 2,162 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Natural Language Toolkit: Clusterer Interfaces
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Trevor Cohn <[email protected]>
# Porting: Steven Bird <[email protected]>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT

from abc import ABCMeta, abstractmethod

from nltk.probability import DictionaryProbDist


class ClusterI(metaclass=ABCMeta):
    """

    Interface covering basic clustering functionality.

    """

    @abstractmethod
    def cluster(self, vectors, assign_clusters=False):
        """

        Assigns the vectors to clusters, learning the clustering parameters

        from the data. Returns a cluster identifier for each vector.

        """

    @abstractmethod
    def classify(self, token):
        """

        Classifies the token into a cluster, setting the token's CLUSTER

        parameter to that cluster identifier.

        """

    def likelihood(self, vector, label):
        """

        Returns the likelihood (a float) of the token having the

        corresponding cluster.

        """
        if self.classify(vector) == label:
            return 1.0
        else:
            return 0.0

    def classification_probdist(self, vector):
        """

        Classifies the token into a cluster, returning

        a probability distribution over the cluster identifiers.

        """
        likelihoods = {}
        sum = 0.0
        for cluster in self.cluster_names():
            likelihoods[cluster] = self.likelihood(vector, cluster)
            sum += likelihoods[cluster]
        for cluster in self.cluster_names():
            likelihoods[cluster] /= sum
        return DictionaryProbDist(likelihoods)

    @abstractmethod
    def num_clusters(self):
        """

        Returns the number of clusters.

        """

    def cluster_names(self):
        """

        Returns the names of the clusters.

        :rtype: list

        """
        return list(range(self.num_clusters()))

    def cluster_name(self, index):
        """

        Returns the names of the cluster at index.

        """
        return index