File size: 5,921 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Natural Language Toolkit: Group Average Agglomerative Clusterer
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Trevor Cohn <[email protected]>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT

try:
    import numpy
except ImportError:
    pass

from nltk.cluster.util import Dendrogram, VectorSpaceClusterer, cosine_distance


class GAAClusterer(VectorSpaceClusterer):
    """

    The Group Average Agglomerative starts with each of the N vectors as singleton

    clusters. It then iteratively merges pairs of clusters which have the

    closest centroids.  This continues until there is only one cluster. The

    order of merges gives rise to a dendrogram: a tree with the earlier merges

    lower than later merges. The membership of a given number of clusters c, 1

    <= c <= N, can be found by cutting the dendrogram at depth c.



    This clusterer uses the cosine similarity metric only, which allows for

    efficient speed-up in the clustering process.

    """

    def __init__(self, num_clusters=1, normalise=True, svd_dimensions=None):
        VectorSpaceClusterer.__init__(self, normalise, svd_dimensions)
        self._num_clusters = num_clusters
        self._dendrogram = None
        self._groups_values = None

    def cluster(self, vectors, assign_clusters=False, trace=False):
        # stores the merge order
        self._dendrogram = Dendrogram(
            [numpy.array(vector, numpy.float64) for vector in vectors]
        )
        return VectorSpaceClusterer.cluster(self, vectors, assign_clusters, trace)

    def cluster_vectorspace(self, vectors, trace=False):
        # variables describing the initial situation
        N = len(vectors)
        cluster_len = [1] * N
        cluster_count = N
        index_map = numpy.arange(N)

        # construct the similarity matrix
        dims = (N, N)
        dist = numpy.ones(dims, dtype=float) * numpy.inf
        for i in range(N):
            for j in range(i + 1, N):
                dist[i, j] = cosine_distance(vectors[i], vectors[j])

        while cluster_count > max(self._num_clusters, 1):
            i, j = numpy.unravel_index(dist.argmin(), dims)
            if trace:
                print("merging %d and %d" % (i, j))

            # update similarities for merging i and j
            self._merge_similarities(dist, cluster_len, i, j)

            # remove j
            dist[:, j] = numpy.inf
            dist[j, :] = numpy.inf

            # merge the clusters
            cluster_len[i] = cluster_len[i] + cluster_len[j]
            self._dendrogram.merge(index_map[i], index_map[j])
            cluster_count -= 1

            # update the index map to reflect the indexes if we
            # had removed j
            index_map[j + 1 :] -= 1
            index_map[j] = N

        self.update_clusters(self._num_clusters)

    def _merge_similarities(self, dist, cluster_len, i, j):
        # the new cluster i merged from i and j adopts the average of
        # i and j's similarity to each other cluster, weighted by the
        # number of points in the clusters i and j
        i_weight = cluster_len[i]
        j_weight = cluster_len[j]
        weight_sum = i_weight + j_weight

        # update for x<i
        dist[:i, i] = dist[:i, i] * i_weight + dist[:i, j] * j_weight
        dist[:i, i] /= weight_sum
        # update for i<x<j
        dist[i, i + 1 : j] = (
            dist[i, i + 1 : j] * i_weight + dist[i + 1 : j, j] * j_weight
        )
        # update for i<j<x
        dist[i, j + 1 :] = dist[i, j + 1 :] * i_weight + dist[j, j + 1 :] * j_weight
        dist[i, i + 1 :] /= weight_sum

    def update_clusters(self, num_clusters):
        clusters = self._dendrogram.groups(num_clusters)
        self._centroids = []
        for cluster in clusters:
            assert len(cluster) > 0
            if self._should_normalise:
                centroid = self._normalise(cluster[0])
            else:
                centroid = numpy.array(cluster[0])
            for vector in cluster[1:]:
                if self._should_normalise:
                    centroid += self._normalise(vector)
                else:
                    centroid += vector
            centroid /= len(cluster)
            self._centroids.append(centroid)
        self._num_clusters = len(self._centroids)

    def classify_vectorspace(self, vector):
        best = None
        for i in range(self._num_clusters):
            centroid = self._centroids[i]
            dist = cosine_distance(vector, centroid)
            if not best or dist < best[0]:
                best = (dist, i)
        return best[1]

    def dendrogram(self):
        """

        :return: The dendrogram representing the current clustering

        :rtype:  Dendrogram

        """
        return self._dendrogram

    def num_clusters(self):
        return self._num_clusters

    def __repr__(self):
        return "<GroupAverageAgglomerative Clusterer n=%d>" % self._num_clusters


def demo():
    """

    Non-interactive demonstration of the clusterers with simple 2-D data.

    """

    from nltk.cluster import GAAClusterer

    # use a set of tokens with 2D indices
    vectors = [numpy.array(f) for f in [[3, 3], [1, 2], [4, 2], [4, 0], [2, 3], [3, 1]]]

    # test the GAAC clusterer with 4 clusters
    clusterer = GAAClusterer(4)
    clusters = clusterer.cluster(vectors, True)

    print("Clusterer:", clusterer)
    print("Clustered:", vectors)
    print("As:", clusters)
    print()

    # show the dendrogram
    clusterer.dendrogram().show()

    # classify a new vector
    vector = numpy.array([3, 3])
    print("classify(%s):" % vector, end=" ")
    print(clusterer.classify(vector))
    print()


if __name__ == "__main__":
    demo()