Spaces:
Sleeping
Sleeping
File size: 22,691 Bytes
d916065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
# Natural Language Toolkit: Discourse Processing
#
# Author: Ewan Klein <[email protected]>
# Dan Garrette <[email protected]>
#
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
r"""
Module for incrementally developing simple discourses, and checking for semantic ambiguity,
consistency and informativeness.
Many of the ideas are based on the CURT family of programs of Blackburn and Bos
(see http://homepages.inf.ed.ac.uk/jbos/comsem/book1.html).
Consistency checking is carried out by using the ``mace`` module to call the Mace4 model builder.
Informativeness checking is carried out with a call to ``Prover.prove()`` from
the ``inference`` module.
``DiscourseTester`` is a constructor for discourses.
The basic data structure is a list of sentences, stored as ``self._sentences``. Each sentence in the list
is assigned a "sentence ID" (``sid``) of the form ``s``\ *i*. For example::
s0: A boxer walks
s1: Every boxer chases a girl
Each sentence can be ambiguous between a number of readings, each of which receives a
"reading ID" (``rid``) of the form ``s``\ *i* -``r``\ *j*. For example::
s0 readings:
s0-r1: some x.(boxer(x) & walk(x))
s0-r0: some x.(boxerdog(x) & walk(x))
A "thread" is a list of readings, represented as a list of ``rid``\ s.
Each thread receives a "thread ID" (``tid``) of the form ``d``\ *i*.
For example::
d0: ['s0-r0', 's1-r0']
The set of all threads for a discourse is the Cartesian product of all the readings of the sequences of sentences.
(This is not intended to scale beyond very short discourses!) The method ``readings(filter=True)`` will only show
those threads which are consistent (taking into account any background assumptions).
"""
import os
from abc import ABCMeta, abstractmethod
from functools import reduce
from operator import add, and_
from nltk.data import show_cfg
from nltk.inference.mace import MaceCommand
from nltk.inference.prover9 import Prover9Command
from nltk.parse import load_parser
from nltk.parse.malt import MaltParser
from nltk.sem.drt import AnaphoraResolutionException, resolve_anaphora
from nltk.sem.glue import DrtGlue
from nltk.sem.logic import Expression
from nltk.tag import RegexpTagger
class ReadingCommand(metaclass=ABCMeta):
@abstractmethod
def parse_to_readings(self, sentence):
"""
:param sentence: the sentence to read
:type sentence: str
"""
def process_thread(self, sentence_readings):
"""
This method should be used to handle dependencies between readings such
as resolving anaphora.
:param sentence_readings: readings to process
:type sentence_readings: list(Expression)
:return: the list of readings after processing
:rtype: list(Expression)
"""
return sentence_readings
@abstractmethod
def combine_readings(self, readings):
"""
:param readings: readings to combine
:type readings: list(Expression)
:return: one combined reading
:rtype: Expression
"""
@abstractmethod
def to_fol(self, expression):
"""
Convert this expression into a First-Order Logic expression.
:param expression: an expression
:type expression: Expression
:return: a FOL version of the input expression
:rtype: Expression
"""
class CfgReadingCommand(ReadingCommand):
def __init__(self, gramfile=None):
"""
:param gramfile: name of file where grammar can be loaded
:type gramfile: str
"""
self._gramfile = (
gramfile if gramfile else "grammars/book_grammars/discourse.fcfg"
)
self._parser = load_parser(self._gramfile)
def parse_to_readings(self, sentence):
""":see: ReadingCommand.parse_to_readings()"""
from nltk.sem import root_semrep
tokens = sentence.split()
trees = self._parser.parse(tokens)
return [root_semrep(tree) for tree in trees]
def combine_readings(self, readings):
""":see: ReadingCommand.combine_readings()"""
return reduce(and_, readings)
def to_fol(self, expression):
""":see: ReadingCommand.to_fol()"""
return expression
class DrtGlueReadingCommand(ReadingCommand):
def __init__(self, semtype_file=None, remove_duplicates=False, depparser=None):
"""
:param semtype_file: name of file where grammar can be loaded
:param remove_duplicates: should duplicates be removed?
:param depparser: the dependency parser
"""
if semtype_file is None:
semtype_file = os.path.join(
"grammars", "sample_grammars", "drt_glue.semtype"
)
self._glue = DrtGlue(
semtype_file=semtype_file,
remove_duplicates=remove_duplicates,
depparser=depparser,
)
def parse_to_readings(self, sentence):
""":see: ReadingCommand.parse_to_readings()"""
return self._glue.parse_to_meaning(sentence)
def process_thread(self, sentence_readings):
""":see: ReadingCommand.process_thread()"""
try:
return [self.combine_readings(sentence_readings)]
except AnaphoraResolutionException:
return []
def combine_readings(self, readings):
""":see: ReadingCommand.combine_readings()"""
thread_reading = reduce(add, readings)
return resolve_anaphora(thread_reading.simplify())
def to_fol(self, expression):
""":see: ReadingCommand.to_fol()"""
return expression.fol()
class DiscourseTester:
"""
Check properties of an ongoing discourse.
"""
def __init__(self, input, reading_command=None, background=None):
"""
Initialize a ``DiscourseTester``.
:param input: the discourse sentences
:type input: list of str
:param background: Formulas which express background assumptions
:type background: list(Expression)
"""
self._input = input
self._sentences = {"s%s" % i: sent for i, sent in enumerate(input)}
self._models = None
self._readings = {}
self._reading_command = (
reading_command if reading_command else CfgReadingCommand()
)
self._threads = {}
self._filtered_threads = {}
if background is not None:
from nltk.sem.logic import Expression
for e in background:
assert isinstance(e, Expression)
self._background = background
else:
self._background = []
###############################
# Sentences
###############################
def sentences(self):
"""
Display the list of sentences in the current discourse.
"""
for id in sorted(self._sentences):
print(f"{id}: {self._sentences[id]}")
def add_sentence(self, sentence, informchk=False, consistchk=False):
"""
Add a sentence to the current discourse.
Updates ``self._input`` and ``self._sentences``.
:param sentence: An input sentence
:type sentence: str
:param informchk: if ``True``, check that the result of adding the sentence is thread-informative. Updates ``self._readings``.
:param consistchk: if ``True``, check that the result of adding the sentence is thread-consistent. Updates ``self._readings``.
"""
# check whether the new sentence is informative (i.e. not entailed by the previous discourse)
if informchk:
self.readings(verbose=False)
for tid in sorted(self._threads):
assumptions = [reading for (rid, reading) in self.expand_threads(tid)]
assumptions += self._background
for sent_reading in self._get_readings(sentence):
tp = Prover9Command(goal=sent_reading, assumptions=assumptions)
if tp.prove():
print(
"Sentence '%s' under reading '%s':"
% (sentence, str(sent_reading))
)
print("Not informative relative to thread '%s'" % tid)
self._input.append(sentence)
self._sentences = {"s%s" % i: sent for i, sent in enumerate(self._input)}
# check whether adding the new sentence to the discourse preserves consistency (i.e. a model can be found for the combined set of
# of assumptions
if consistchk:
self.readings(verbose=False)
self.models(show=False)
def retract_sentence(self, sentence, verbose=True):
"""
Remove a sentence from the current discourse.
Updates ``self._input``, ``self._sentences`` and ``self._readings``.
:param sentence: An input sentence
:type sentence: str
:param verbose: If ``True``, report on the updated list of sentences.
"""
try:
self._input.remove(sentence)
except ValueError:
print(
"Retraction failed. The sentence '%s' is not part of the current discourse:"
% sentence
)
self.sentences()
return None
self._sentences = {"s%s" % i: sent for i, sent in enumerate(self._input)}
self.readings(verbose=False)
if verbose:
print("Current sentences are ")
self.sentences()
def grammar(self):
"""
Print out the grammar in use for parsing input sentences
"""
show_cfg(self._reading_command._gramfile)
###############################
# Readings and Threads
###############################
def _get_readings(self, sentence):
"""
Build a list of semantic readings for a sentence.
:rtype: list(Expression)
"""
return self._reading_command.parse_to_readings(sentence)
def _construct_readings(self):
"""
Use ``self._sentences`` to construct a value for ``self._readings``.
"""
# re-initialize self._readings in case we have retracted a sentence
self._readings = {}
for sid in sorted(self._sentences):
sentence = self._sentences[sid]
readings = self._get_readings(sentence)
self._readings[sid] = {
f"{sid}-r{rid}": reading.simplify()
for rid, reading in enumerate(sorted(readings, key=str))
}
def _construct_threads(self):
"""
Use ``self._readings`` to construct a value for ``self._threads``
and use the model builder to construct a value for ``self._filtered_threads``
"""
thread_list = [[]]
for sid in sorted(self._readings):
thread_list = self.multiply(thread_list, sorted(self._readings[sid]))
self._threads = {"d%s" % tid: thread for tid, thread in enumerate(thread_list)}
# re-initialize the filtered threads
self._filtered_threads = {}
# keep the same ids, but only include threads which get models
consistency_checked = self._check_consistency(self._threads)
for (tid, thread) in self._threads.items():
if (tid, True) in consistency_checked:
self._filtered_threads[tid] = thread
def _show_readings(self, sentence=None):
"""
Print out the readings for the discourse (or a single sentence).
"""
if sentence is not None:
print("The sentence '%s' has these readings:" % sentence)
for r in [str(reading) for reading in (self._get_readings(sentence))]:
print(" %s" % r)
else:
for sid in sorted(self._readings):
print()
print("%s readings:" % sid)
print() #'-' * 30
for rid in sorted(self._readings[sid]):
lf = self._readings[sid][rid]
print(f"{rid}: {lf.normalize()}")
def _show_threads(self, filter=False, show_thread_readings=False):
"""
Print out the value of ``self._threads`` or ``self._filtered_hreads``
"""
threads = self._filtered_threads if filter else self._threads
for tid in sorted(threads):
if show_thread_readings:
readings = [
self._readings[rid.split("-")[0]][rid] for rid in self._threads[tid]
]
try:
thread_reading = (
": %s"
% self._reading_command.combine_readings(readings).normalize()
)
except Exception as e:
thread_reading = ": INVALID: %s" % e.__class__.__name__
else:
thread_reading = ""
print("%s:" % tid, self._threads[tid], thread_reading)
def readings(
self,
sentence=None,
threaded=False,
verbose=True,
filter=False,
show_thread_readings=False,
):
"""
Construct and show the readings of the discourse (or of a single sentence).
:param sentence: test just this sentence
:type sentence: str
:param threaded: if ``True``, print out each thread ID and the corresponding thread.
:param filter: if ``True``, only print out consistent thread IDs and threads.
"""
self._construct_readings()
self._construct_threads()
# if we are filtering or showing thread readings, show threads
if filter or show_thread_readings:
threaded = True
if verbose:
if not threaded:
self._show_readings(sentence=sentence)
else:
self._show_threads(
filter=filter, show_thread_readings=show_thread_readings
)
def expand_threads(self, thread_id, threads=None):
"""
Given a thread ID, find the list of ``logic.Expression`` objects corresponding to the reading IDs in that thread.
:param thread_id: thread ID
:type thread_id: str
:param threads: a mapping from thread IDs to lists of reading IDs
:type threads: dict
:return: A list of pairs ``(rid, reading)`` where reading is the ``logic.Expression`` associated with a reading ID
:rtype: list of tuple
"""
if threads is None:
threads = self._threads
return [
(rid, self._readings[sid][rid])
for rid in threads[thread_id]
for sid in rid.split("-")[:1]
]
###############################
# Models and Background
###############################
def _check_consistency(self, threads, show=False, verbose=False):
results = []
for tid in sorted(threads):
assumptions = [
reading for (rid, reading) in self.expand_threads(tid, threads=threads)
]
assumptions = list(
map(
self._reading_command.to_fol,
self._reading_command.process_thread(assumptions),
)
)
if assumptions:
assumptions += self._background
# if Mace4 finds a model, it always seems to find it quickly
mb = MaceCommand(None, assumptions, max_models=20)
modelfound = mb.build_model()
else:
modelfound = False
results.append((tid, modelfound))
if show:
spacer(80)
print("Model for Discourse Thread %s" % tid)
spacer(80)
if verbose:
for a in assumptions:
print(a)
spacer(80)
if modelfound:
print(mb.model(format="cooked"))
else:
print("No model found!\n")
return results
def models(self, thread_id=None, show=True, verbose=False):
"""
Call Mace4 to build a model for each current discourse thread.
:param thread_id: thread ID
:type thread_id: str
:param show: If ``True``, display the model that has been found.
"""
self._construct_readings()
self._construct_threads()
threads = {thread_id: self._threads[thread_id]} if thread_id else self._threads
for (tid, modelfound) in self._check_consistency(
threads, show=show, verbose=verbose
):
idlist = [rid for rid in threads[tid]]
if not modelfound:
print(f"Inconsistent discourse: {tid} {idlist}:")
for rid, reading in self.expand_threads(tid):
print(f" {rid}: {reading.normalize()}")
print()
else:
print(f"Consistent discourse: {tid} {idlist}:")
for rid, reading in self.expand_threads(tid):
print(f" {rid}: {reading.normalize()}")
print()
def add_background(self, background, verbose=False):
"""
Add a list of background assumptions for reasoning about the discourse.
When called, this method also updates the discourse model's set of readings and threads.
:param background: Formulas which contain background information
:type background: list(Expression)
"""
from nltk.sem.logic import Expression
for (count, e) in enumerate(background):
assert isinstance(e, Expression)
if verbose:
print("Adding assumption %s to background" % count)
self._background.append(e)
# update the state
self._construct_readings()
self._construct_threads()
def background(self):
"""
Show the current background assumptions.
"""
for e in self._background:
print(str(e))
###############################
# Misc
###############################
@staticmethod
def multiply(discourse, readings):
"""
Multiply every thread in ``discourse`` by every reading in ``readings``.
Given discourse = [['A'], ['B']], readings = ['a', 'b', 'c'] , returns
[['A', 'a'], ['A', 'b'], ['A', 'c'], ['B', 'a'], ['B', 'b'], ['B', 'c']]
:param discourse: the current list of readings
:type discourse: list of lists
:param readings: an additional list of readings
:type readings: list(Expression)
:rtype: A list of lists
"""
result = []
for sublist in discourse:
for r in readings:
new = []
new += sublist
new.append(r)
result.append(new)
return result
def load_fol(s):
"""
Temporarily duplicated from ``nltk.sem.util``.
Convert a file of first order formulas into a list of ``Expression`` objects.
:param s: the contents of the file
:type s: str
:return: a list of parsed formulas.
:rtype: list(Expression)
"""
statements = []
for linenum, line in enumerate(s.splitlines()):
line = line.strip()
if line.startswith("#") or line == "":
continue
try:
statements.append(Expression.fromstring(line))
except Exception as e:
raise ValueError(f"Unable to parse line {linenum}: {line}") from e
return statements
###############################
# Demo
###############################
def discourse_demo(reading_command=None):
"""
Illustrate the various methods of ``DiscourseTester``
"""
dt = DiscourseTester(
["A boxer walks", "Every boxer chases a girl"], reading_command
)
dt.models()
print()
# dt.grammar()
print()
dt.sentences()
print()
dt.readings()
print()
dt.readings(threaded=True)
print()
dt.models("d1")
dt.add_sentence("John is a boxer")
print()
dt.sentences()
print()
dt.readings(threaded=True)
print()
dt = DiscourseTester(
["A student dances", "Every student is a person"], reading_command
)
print()
dt.add_sentence("No person dances", consistchk=True)
print()
dt.readings()
print()
dt.retract_sentence("No person dances", verbose=True)
print()
dt.models()
print()
dt.readings("A person dances")
print()
dt.add_sentence("A person dances", informchk=True)
dt = DiscourseTester(
["Vincent is a boxer", "Fido is a boxer", "Vincent is married", "Fido barks"],
reading_command,
)
dt.readings(filter=True)
import nltk.data
background_file = os.path.join("grammars", "book_grammars", "background.fol")
background = nltk.data.load(background_file)
print()
dt.add_background(background, verbose=False)
dt.background()
print()
dt.readings(filter=True)
print()
dt.models()
def drt_discourse_demo(reading_command=None):
"""
Illustrate the various methods of ``DiscourseTester``
"""
dt = DiscourseTester(["every dog chases a boy", "he runs"], reading_command)
dt.models()
print()
dt.sentences()
print()
dt.readings()
print()
dt.readings(show_thread_readings=True)
print()
dt.readings(filter=True, show_thread_readings=True)
def spacer(num=30):
print("-" * num)
def demo():
discourse_demo()
tagger = RegexpTagger(
[
("^(chases|runs)$", "VB"),
("^(a)$", "ex_quant"),
("^(every)$", "univ_quant"),
("^(dog|boy)$", "NN"),
("^(he)$", "PRP"),
]
)
depparser = MaltParser(tagger=tagger)
drt_discourse_demo(
DrtGlueReadingCommand(remove_duplicates=False, depparser=depparser)
)
if __name__ == "__main__":
demo()
|