File size: 19,174 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
# Natural Language Toolkit: Nonmonotonic Reasoning
#
# Author: Daniel H. Garrette <[email protected]>
#
# Copyright (C) 2001-2023 NLTK Project
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT

"""

A module to perform nonmonotonic reasoning.  The ideas and demonstrations in

this module are based on "Logical Foundations of Artificial Intelligence" by

Michael R. Genesereth and Nils J. Nilsson.

"""

from collections import defaultdict
from functools import reduce

from nltk.inference.api import Prover, ProverCommandDecorator
from nltk.inference.prover9 import Prover9, Prover9Command
from nltk.sem.logic import (
    AbstractVariableExpression,
    AllExpression,
    AndExpression,
    ApplicationExpression,
    BooleanExpression,
    EqualityExpression,
    ExistsExpression,
    Expression,
    ImpExpression,
    NegatedExpression,
    Variable,
    VariableExpression,
    operator,
    unique_variable,
)


class ProverParseError(Exception):
    pass


def get_domain(goal, assumptions):
    if goal is None:
        all_expressions = assumptions
    else:
        all_expressions = assumptions + [-goal]
    return reduce(operator.or_, (a.constants() for a in all_expressions), set())


class ClosedDomainProver(ProverCommandDecorator):
    """

    This is a prover decorator that adds domain closure assumptions before

    proving.

    """

    def assumptions(self):
        assumptions = [a for a in self._command.assumptions()]
        goal = self._command.goal()
        domain = get_domain(goal, assumptions)
        return [self.replace_quants(ex, domain) for ex in assumptions]

    def goal(self):
        goal = self._command.goal()
        domain = get_domain(goal, self._command.assumptions())
        return self.replace_quants(goal, domain)

    def replace_quants(self, ex, domain):
        """

        Apply the closed domain assumption to the expression



        - Domain = union([e.free()|e.constants() for e in all_expressions])

        - translate "exists x.P" to "(z=d1 | z=d2 | ... ) & P.replace(x,z)" OR

                    "P.replace(x, d1) | P.replace(x, d2) | ..."

        - translate "all x.P" to "P.replace(x, d1) & P.replace(x, d2) & ..."



        :param ex: ``Expression``

        :param domain: set of {Variable}s

        :return: ``Expression``

        """
        if isinstance(ex, AllExpression):
            conjuncts = [
                ex.term.replace(ex.variable, VariableExpression(d)) for d in domain
            ]
            conjuncts = [self.replace_quants(c, domain) for c in conjuncts]
            return reduce(lambda x, y: x & y, conjuncts)
        elif isinstance(ex, BooleanExpression):
            return ex.__class__(
                self.replace_quants(ex.first, domain),
                self.replace_quants(ex.second, domain),
            )
        elif isinstance(ex, NegatedExpression):
            return -self.replace_quants(ex.term, domain)
        elif isinstance(ex, ExistsExpression):
            disjuncts = [
                ex.term.replace(ex.variable, VariableExpression(d)) for d in domain
            ]
            disjuncts = [self.replace_quants(d, domain) for d in disjuncts]
            return reduce(lambda x, y: x | y, disjuncts)
        else:
            return ex


class UniqueNamesProver(ProverCommandDecorator):
    """

    This is a prover decorator that adds unique names assumptions before

    proving.

    """

    def assumptions(self):
        """

        - Domain = union([e.free()|e.constants() for e in all_expressions])

        - if "d1 = d2" cannot be proven from the premises, then add "d1 != d2"

        """
        assumptions = self._command.assumptions()

        domain = list(get_domain(self._command.goal(), assumptions))

        # build a dictionary of obvious equalities
        eq_sets = SetHolder()
        for a in assumptions:
            if isinstance(a, EqualityExpression):
                av = a.first.variable
                bv = a.second.variable
                # put 'a' and 'b' in the same set
                eq_sets[av].add(bv)

        new_assumptions = []
        for i, a in enumerate(domain):
            for b in domain[i + 1 :]:
                # if a and b are not already in the same equality set
                if b not in eq_sets[a]:
                    newEqEx = EqualityExpression(
                        VariableExpression(a), VariableExpression(b)
                    )
                    if Prover9().prove(newEqEx, assumptions):
                        # we can prove that the names are the same entity.
                        # remember that they are equal so we don't re-check.
                        eq_sets[a].add(b)
                    else:
                        # we can't prove it, so assume unique names
                        new_assumptions.append(-newEqEx)

        return assumptions + new_assumptions


class SetHolder(list):
    """

    A list of sets of Variables.

    """

    def __getitem__(self, item):
        """

        :param item: ``Variable``

        :return: the set containing 'item'

        """
        assert isinstance(item, Variable)
        for s in self:
            if item in s:
                return s
        # item is not found in any existing set.  so create a new set
        new = {item}
        self.append(new)
        return new


class ClosedWorldProver(ProverCommandDecorator):
    """

    This is a prover decorator that completes predicates before proving.



    If the assumptions contain "P(A)", then "all x.(P(x) -> (x=A))" is the completion of "P".

    If the assumptions contain "all x.(ostrich(x) -> bird(x))", then "all x.(bird(x) -> ostrich(x))" is the completion of "bird".

    If the assumptions don't contain anything that are "P", then "all x.-P(x)" is the completion of "P".



    walk(Socrates)

    Socrates != Bill

    + all x.(walk(x) -> (x=Socrates))

    ----------------

    -walk(Bill)



    see(Socrates, John)

    see(John, Mary)

    Socrates != John

    John != Mary

    + all x.all y.(see(x,y) -> ((x=Socrates & y=John) | (x=John & y=Mary)))

    ----------------

    -see(Socrates, Mary)



    all x.(ostrich(x) -> bird(x))

    bird(Tweety)

    -ostrich(Sam)

    Sam != Tweety

    + all x.(bird(x) -> (ostrich(x) | x=Tweety))

    + all x.-ostrich(x)

    -------------------

    -bird(Sam)

    """

    def assumptions(self):
        assumptions = self._command.assumptions()

        predicates = self._make_predicate_dict(assumptions)

        new_assumptions = []
        for p in predicates:
            predHolder = predicates[p]
            new_sig = self._make_unique_signature(predHolder)
            new_sig_exs = [VariableExpression(v) for v in new_sig]

            disjuncts = []

            # Turn the signatures into disjuncts
            for sig in predHolder.signatures:
                equality_exs = []
                for v1, v2 in zip(new_sig_exs, sig):
                    equality_exs.append(EqualityExpression(v1, v2))
                disjuncts.append(reduce(lambda x, y: x & y, equality_exs))

            # Turn the properties into disjuncts
            for prop in predHolder.properties:
                # replace variables from the signature with new sig variables
                bindings = {}
                for v1, v2 in zip(new_sig_exs, prop[0]):
                    bindings[v2] = v1
                disjuncts.append(prop[1].substitute_bindings(bindings))

            # make the assumption
            if disjuncts:
                # disjuncts exist, so make an implication
                antecedent = self._make_antecedent(p, new_sig)
                consequent = reduce(lambda x, y: x | y, disjuncts)
                accum = ImpExpression(antecedent, consequent)
            else:
                # nothing has property 'p'
                accum = NegatedExpression(self._make_antecedent(p, new_sig))

            # quantify the implication
            for new_sig_var in new_sig[::-1]:
                accum = AllExpression(new_sig_var, accum)
            new_assumptions.append(accum)

        return assumptions + new_assumptions

    def _make_unique_signature(self, predHolder):
        """

        This method figures out how many arguments the predicate takes and

        returns a tuple containing that number of unique variables.

        """
        return tuple(unique_variable() for i in range(predHolder.signature_len))

    def _make_antecedent(self, predicate, signature):
        """

        Return an application expression with 'predicate' as the predicate

        and 'signature' as the list of arguments.

        """
        antecedent = predicate
        for v in signature:
            antecedent = antecedent(VariableExpression(v))
        return antecedent

    def _make_predicate_dict(self, assumptions):
        """

        Create a dictionary of predicates from the assumptions.



        :param assumptions: a list of ``Expression``s

        :return: dict mapping ``AbstractVariableExpression`` to ``PredHolder``

        """
        predicates = defaultdict(PredHolder)
        for a in assumptions:
            self._map_predicates(a, predicates)
        return predicates

    def _map_predicates(self, expression, predDict):
        if isinstance(expression, ApplicationExpression):
            func, args = expression.uncurry()
            if isinstance(func, AbstractVariableExpression):
                predDict[func].append_sig(tuple(args))
        elif isinstance(expression, AndExpression):
            self._map_predicates(expression.first, predDict)
            self._map_predicates(expression.second, predDict)
        elif isinstance(expression, AllExpression):
            # collect all the universally quantified variables
            sig = [expression.variable]
            term = expression.term
            while isinstance(term, AllExpression):
                sig.append(term.variable)
                term = term.term
            if isinstance(term, ImpExpression):
                if isinstance(term.first, ApplicationExpression) and isinstance(
                    term.second, ApplicationExpression
                ):
                    func1, args1 = term.first.uncurry()
                    func2, args2 = term.second.uncurry()
                    if (
                        isinstance(func1, AbstractVariableExpression)
                        and isinstance(func2, AbstractVariableExpression)
                        and sig == [v.variable for v in args1]
                        and sig == [v.variable for v in args2]
                    ):
                        predDict[func2].append_prop((tuple(sig), term.first))
                        predDict[func1].validate_sig_len(sig)


class PredHolder:
    """

    This class will be used by a dictionary that will store information

    about predicates to be used by the ``ClosedWorldProver``.



    The 'signatures' property is a list of tuples defining signatures for

    which the predicate is true.  For instance, 'see(john, mary)' would be

    result in the signature '(john,mary)' for 'see'.



    The second element of the pair is a list of pairs such that the first

    element of the pair is a tuple of variables and the second element is an

    expression of those variables that makes the predicate true.  For instance,

    'all x.all y.(see(x,y) -> know(x,y))' would result in "((x,y),('see(x,y)'))"

    for 'know'.

    """

    def __init__(self):
        self.signatures = []
        self.properties = []
        self.signature_len = None

    def append_sig(self, new_sig):
        self.validate_sig_len(new_sig)
        self.signatures.append(new_sig)

    def append_prop(self, new_prop):
        self.validate_sig_len(new_prop[0])
        self.properties.append(new_prop)

    def validate_sig_len(self, new_sig):
        if self.signature_len is None:
            self.signature_len = len(new_sig)
        elif self.signature_len != len(new_sig):
            raise Exception("Signature lengths do not match")

    def __str__(self):
        return f"({self.signatures},{self.properties},{self.signature_len})"

    def __repr__(self):
        return "%s" % self


def closed_domain_demo():
    lexpr = Expression.fromstring

    p1 = lexpr(r"exists x.walk(x)")
    p2 = lexpr(r"man(Socrates)")
    c = lexpr(r"walk(Socrates)")
    prover = Prover9Command(c, [p1, p2])
    print(prover.prove())
    cdp = ClosedDomainProver(prover)
    print("assumptions:")
    for a in cdp.assumptions():
        print("   ", a)
    print("goal:", cdp.goal())
    print(cdp.prove())

    p1 = lexpr(r"exists x.walk(x)")
    p2 = lexpr(r"man(Socrates)")
    p3 = lexpr(r"-walk(Bill)")
    c = lexpr(r"walk(Socrates)")
    prover = Prover9Command(c, [p1, p2, p3])
    print(prover.prove())
    cdp = ClosedDomainProver(prover)
    print("assumptions:")
    for a in cdp.assumptions():
        print("   ", a)
    print("goal:", cdp.goal())
    print(cdp.prove())

    p1 = lexpr(r"exists x.walk(x)")
    p2 = lexpr(r"man(Socrates)")
    p3 = lexpr(r"-walk(Bill)")
    c = lexpr(r"walk(Socrates)")
    prover = Prover9Command(c, [p1, p2, p3])
    print(prover.prove())
    cdp = ClosedDomainProver(prover)
    print("assumptions:")
    for a in cdp.assumptions():
        print("   ", a)
    print("goal:", cdp.goal())
    print(cdp.prove())

    p1 = lexpr(r"walk(Socrates)")
    p2 = lexpr(r"walk(Bill)")
    c = lexpr(r"all x.walk(x)")
    prover = Prover9Command(c, [p1, p2])
    print(prover.prove())
    cdp = ClosedDomainProver(prover)
    print("assumptions:")
    for a in cdp.assumptions():
        print("   ", a)
    print("goal:", cdp.goal())
    print(cdp.prove())

    p1 = lexpr(r"girl(mary)")
    p2 = lexpr(r"dog(rover)")
    p3 = lexpr(r"all x.(girl(x) -> -dog(x))")
    p4 = lexpr(r"all x.(dog(x) -> -girl(x))")
    p5 = lexpr(r"chase(mary, rover)")
    c = lexpr(r"exists y.(dog(y) & all x.(girl(x) -> chase(x,y)))")
    prover = Prover9Command(c, [p1, p2, p3, p4, p5])
    print(prover.prove())
    cdp = ClosedDomainProver(prover)
    print("assumptions:")
    for a in cdp.assumptions():
        print("   ", a)
    print("goal:", cdp.goal())
    print(cdp.prove())


def unique_names_demo():
    lexpr = Expression.fromstring

    p1 = lexpr(r"man(Socrates)")
    p2 = lexpr(r"man(Bill)")
    c = lexpr(r"exists x.exists y.(x != y)")
    prover = Prover9Command(c, [p1, p2])
    print(prover.prove())
    unp = UniqueNamesProver(prover)
    print("assumptions:")
    for a in unp.assumptions():
        print("   ", a)
    print("goal:", unp.goal())
    print(unp.prove())

    p1 = lexpr(r"all x.(walk(x) -> (x = Socrates))")
    p2 = lexpr(r"Bill = William")
    p3 = lexpr(r"Bill = Billy")
    c = lexpr(r"-walk(William)")
    prover = Prover9Command(c, [p1, p2, p3])
    print(prover.prove())
    unp = UniqueNamesProver(prover)
    print("assumptions:")
    for a in unp.assumptions():
        print("   ", a)
    print("goal:", unp.goal())
    print(unp.prove())


def closed_world_demo():
    lexpr = Expression.fromstring

    p1 = lexpr(r"walk(Socrates)")
    p2 = lexpr(r"(Socrates != Bill)")
    c = lexpr(r"-walk(Bill)")
    prover = Prover9Command(c, [p1, p2])
    print(prover.prove())
    cwp = ClosedWorldProver(prover)
    print("assumptions:")
    for a in cwp.assumptions():
        print("   ", a)
    print("goal:", cwp.goal())
    print(cwp.prove())

    p1 = lexpr(r"see(Socrates, John)")
    p2 = lexpr(r"see(John, Mary)")
    p3 = lexpr(r"(Socrates != John)")
    p4 = lexpr(r"(John != Mary)")
    c = lexpr(r"-see(Socrates, Mary)")
    prover = Prover9Command(c, [p1, p2, p3, p4])
    print(prover.prove())
    cwp = ClosedWorldProver(prover)
    print("assumptions:")
    for a in cwp.assumptions():
        print("   ", a)
    print("goal:", cwp.goal())
    print(cwp.prove())

    p1 = lexpr(r"all x.(ostrich(x) -> bird(x))")
    p2 = lexpr(r"bird(Tweety)")
    p3 = lexpr(r"-ostrich(Sam)")
    p4 = lexpr(r"Sam != Tweety")
    c = lexpr(r"-bird(Sam)")
    prover = Prover9Command(c, [p1, p2, p3, p4])
    print(prover.prove())
    cwp = ClosedWorldProver(prover)
    print("assumptions:")
    for a in cwp.assumptions():
        print("   ", a)
    print("goal:", cwp.goal())
    print(cwp.prove())


def combination_prover_demo():
    lexpr = Expression.fromstring

    p1 = lexpr(r"see(Socrates, John)")
    p2 = lexpr(r"see(John, Mary)")
    c = lexpr(r"-see(Socrates, Mary)")
    prover = Prover9Command(c, [p1, p2])
    print(prover.prove())
    command = ClosedDomainProver(UniqueNamesProver(ClosedWorldProver(prover)))
    for a in command.assumptions():
        print(a)
    print(command.prove())


def default_reasoning_demo():
    lexpr = Expression.fromstring

    premises = []

    # define taxonomy
    premises.append(lexpr(r"all x.(elephant(x)        -> animal(x))"))
    premises.append(lexpr(r"all x.(bird(x)            -> animal(x))"))
    premises.append(lexpr(r"all x.(dove(x)            -> bird(x))"))
    premises.append(lexpr(r"all x.(ostrich(x)         -> bird(x))"))
    premises.append(lexpr(r"all x.(flying_ostrich(x)  -> ostrich(x))"))

    # default properties
    premises.append(
        lexpr(r"all x.((animal(x)  & -Ab1(x)) -> -fly(x))")
    )  # normal animals don't fly
    premises.append(
        lexpr(r"all x.((bird(x)    & -Ab2(x)) -> fly(x))")
    )  # normal birds fly
    premises.append(
        lexpr(r"all x.((ostrich(x) & -Ab3(x)) -> -fly(x))")
    )  # normal ostriches don't fly

    # specify abnormal entities
    premises.append(lexpr(r"all x.(bird(x)           -> Ab1(x))"))  # flight
    premises.append(lexpr(r"all x.(ostrich(x)        -> Ab2(x))"))  # non-flying bird
    premises.append(lexpr(r"all x.(flying_ostrich(x) -> Ab3(x))"))  # flying ostrich

    # define entities
    premises.append(lexpr(r"elephant(E)"))
    premises.append(lexpr(r"dove(D)"))
    premises.append(lexpr(r"ostrich(O)"))

    # print the assumptions
    prover = Prover9Command(None, premises)
    command = UniqueNamesProver(ClosedWorldProver(prover))
    for a in command.assumptions():
        print(a)

    print_proof("-fly(E)", premises)
    print_proof("fly(D)", premises)
    print_proof("-fly(O)", premises)


def print_proof(goal, premises):
    lexpr = Expression.fromstring
    prover = Prover9Command(lexpr(goal), premises)
    command = UniqueNamesProver(ClosedWorldProver(prover))
    print(goal, prover.prove(), command.prove())


def demo():
    closed_domain_demo()
    unique_names_demo()
    closed_world_demo()
    combination_prover_demo()
    default_reasoning_demo()


if __name__ == "__main__":
    demo()