File size: 26,320 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
# Natural Language Toolkit: First-Order Tableau Theorem Prover
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Dan Garrette <[email protected]>
#
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT

"""

Module for a tableau-based First Order theorem prover.

"""

from nltk.inference.api import BaseProverCommand, Prover
from nltk.internals import Counter
from nltk.sem.logic import (
    AbstractVariableExpression,
    AllExpression,
    AndExpression,
    ApplicationExpression,
    EqualityExpression,
    ExistsExpression,
    Expression,
    FunctionVariableExpression,
    IffExpression,
    ImpExpression,
    LambdaExpression,
    NegatedExpression,
    OrExpression,
    Variable,
    VariableExpression,
    unique_variable,
)

_counter = Counter()


class ProverParseError(Exception):
    pass


class TableauProver(Prover):
    _assume_false = False

    def _prove(self, goal=None, assumptions=None, verbose=False):
        if not assumptions:
            assumptions = []

        result = None
        try:
            agenda = Agenda()
            if goal:
                agenda.put(-goal)
            agenda.put_all(assumptions)
            debugger = Debug(verbose)
            result = self._attempt_proof(agenda, set(), set(), debugger)
        except RuntimeError as e:
            if self._assume_false and str(e).startswith(
                "maximum recursion depth exceeded"
            ):
                result = False
            else:
                if verbose:
                    print(e)
                else:
                    raise e
        return (result, "\n".join(debugger.lines))

    def _attempt_proof(self, agenda, accessible_vars, atoms, debug):
        (current, context), category = agenda.pop_first()

        # if there's nothing left in the agenda, and we haven't closed the path
        if not current:
            debug.line("AGENDA EMPTY")
            return False

        proof_method = {
            Categories.ATOM: self._attempt_proof_atom,
            Categories.PROP: self._attempt_proof_prop,
            Categories.N_ATOM: self._attempt_proof_n_atom,
            Categories.N_PROP: self._attempt_proof_n_prop,
            Categories.APP: self._attempt_proof_app,
            Categories.N_APP: self._attempt_proof_n_app,
            Categories.N_EQ: self._attempt_proof_n_eq,
            Categories.D_NEG: self._attempt_proof_d_neg,
            Categories.N_ALL: self._attempt_proof_n_all,
            Categories.N_EXISTS: self._attempt_proof_n_some,
            Categories.AND: self._attempt_proof_and,
            Categories.N_OR: self._attempt_proof_n_or,
            Categories.N_IMP: self._attempt_proof_n_imp,
            Categories.OR: self._attempt_proof_or,
            Categories.IMP: self._attempt_proof_imp,
            Categories.N_AND: self._attempt_proof_n_and,
            Categories.IFF: self._attempt_proof_iff,
            Categories.N_IFF: self._attempt_proof_n_iff,
            Categories.EQ: self._attempt_proof_eq,
            Categories.EXISTS: self._attempt_proof_some,
            Categories.ALL: self._attempt_proof_all,
        }[category]

        debug.line((current, context))
        return proof_method(current, context, agenda, accessible_vars, atoms, debug)

    def _attempt_proof_atom(

        self, current, context, agenda, accessible_vars, atoms, debug

    ):
        # Check if the branch is closed.  Return 'True' if it is
        if (current, True) in atoms:
            debug.line("CLOSED", 1)
            return True

        if context:
            if isinstance(context.term, NegatedExpression):
                current = current.negate()
            agenda.put(context(current).simplify())
            return self._attempt_proof(agenda, accessible_vars, atoms, debug + 1)
        else:
            # mark all AllExpressions as 'not exhausted' into the agenda since we are (potentially) adding new accessible vars
            agenda.mark_alls_fresh()
            return self._attempt_proof(
                agenda,
                accessible_vars | set(current.args),
                atoms | {(current, False)},
                debug + 1,
            )

    def _attempt_proof_n_atom(

        self, current, context, agenda, accessible_vars, atoms, debug

    ):
        # Check if the branch is closed.  Return 'True' if it is
        if (current.term, False) in atoms:
            debug.line("CLOSED", 1)
            return True

        if context:
            if isinstance(context.term, NegatedExpression):
                current = current.negate()
            agenda.put(context(current).simplify())
            return self._attempt_proof(agenda, accessible_vars, atoms, debug + 1)
        else:
            # mark all AllExpressions as 'not exhausted' into the agenda since we are (potentially) adding new accessible vars
            agenda.mark_alls_fresh()
            return self._attempt_proof(
                agenda,
                accessible_vars | set(current.term.args),
                atoms | {(current.term, True)},
                debug + 1,
            )

    def _attempt_proof_prop(

        self, current, context, agenda, accessible_vars, atoms, debug

    ):
        # Check if the branch is closed.  Return 'True' if it is
        if (current, True) in atoms:
            debug.line("CLOSED", 1)
            return True

        # mark all AllExpressions as 'not exhausted' into the agenda since we are (potentially) adding new accessible vars
        agenda.mark_alls_fresh()
        return self._attempt_proof(
            agenda, accessible_vars, atoms | {(current, False)}, debug + 1
        )

    def _attempt_proof_n_prop(

        self, current, context, agenda, accessible_vars, atoms, debug

    ):
        # Check if the branch is closed.  Return 'True' if it is
        if (current.term, False) in atoms:
            debug.line("CLOSED", 1)
            return True

        # mark all AllExpressions as 'not exhausted' into the agenda since we are (potentially) adding new accessible vars
        agenda.mark_alls_fresh()
        return self._attempt_proof(
            agenda, accessible_vars, atoms | {(current.term, True)}, debug + 1
        )

    def _attempt_proof_app(

        self, current, context, agenda, accessible_vars, atoms, debug

    ):
        f, args = current.uncurry()
        for i, arg in enumerate(args):
            if not TableauProver.is_atom(arg):
                ctx = f
                nv = Variable("X%s" % _counter.get())
                for j, a in enumerate(args):
                    ctx = ctx(VariableExpression(nv)) if i == j else ctx(a)
                if context:
                    ctx = context(ctx).simplify()
                ctx = LambdaExpression(nv, ctx)
                agenda.put(arg, ctx)
                return self._attempt_proof(agenda, accessible_vars, atoms, debug + 1)
        raise Exception("If this method is called, there must be a non-atomic argument")

    def _attempt_proof_n_app(

        self, current, context, agenda, accessible_vars, atoms, debug

    ):
        f, args = current.term.uncurry()
        for i, arg in enumerate(args):
            if not TableauProver.is_atom(arg):
                ctx = f
                nv = Variable("X%s" % _counter.get())
                for j, a in enumerate(args):
                    ctx = ctx(VariableExpression(nv)) if i == j else ctx(a)
                if context:
                    # combine new context with existing
                    ctx = context(ctx).simplify()
                ctx = LambdaExpression(nv, -ctx)
                agenda.put(-arg, ctx)
                return self._attempt_proof(agenda, accessible_vars, atoms, debug + 1)
        raise Exception("If this method is called, there must be a non-atomic argument")

    def _attempt_proof_n_eq(

        self, current, context, agenda, accessible_vars, atoms, debug

    ):
        ###########################################################################
        # Since 'current' is of type '~(a=b)', the path is closed if 'a' == 'b'
        ###########################################################################
        if current.term.first == current.term.second:
            debug.line("CLOSED", 1)
            return True

        agenda[Categories.N_EQ].add((current, context))
        current._exhausted = True
        return self._attempt_proof(
            agenda,
            accessible_vars | {current.term.first, current.term.second},
            atoms,
            debug + 1,
        )

    def _attempt_proof_d_neg(

        self, current, context, agenda, accessible_vars, atoms, debug

    ):
        agenda.put(current.term.term, context)
        return self._attempt_proof(agenda, accessible_vars, atoms, debug + 1)

    def _attempt_proof_n_all(

        self, current, context, agenda, accessible_vars, atoms, debug

    ):
        agenda[Categories.EXISTS].add(
            (ExistsExpression(current.term.variable, -current.term.term), context)
        )
        return self._attempt_proof(agenda, accessible_vars, atoms, debug + 1)

    def _attempt_proof_n_some(

        self, current, context, agenda, accessible_vars, atoms, debug

    ):
        agenda[Categories.ALL].add(
            (AllExpression(current.term.variable, -current.term.term), context)
        )
        return self._attempt_proof(agenda, accessible_vars, atoms, debug + 1)

    def _attempt_proof_and(

        self, current, context, agenda, accessible_vars, atoms, debug

    ):
        agenda.put(current.first, context)
        agenda.put(current.second, context)
        return self._attempt_proof(agenda, accessible_vars, atoms, debug + 1)

    def _attempt_proof_n_or(

        self, current, context, agenda, accessible_vars, atoms, debug

    ):
        agenda.put(-current.term.first, context)
        agenda.put(-current.term.second, context)
        return self._attempt_proof(agenda, accessible_vars, atoms, debug + 1)

    def _attempt_proof_n_imp(

        self, current, context, agenda, accessible_vars, atoms, debug

    ):
        agenda.put(current.term.first, context)
        agenda.put(-current.term.second, context)
        return self._attempt_proof(agenda, accessible_vars, atoms, debug + 1)

    def _attempt_proof_or(

        self, current, context, agenda, accessible_vars, atoms, debug

    ):
        new_agenda = agenda.clone()
        agenda.put(current.first, context)
        new_agenda.put(current.second, context)
        return self._attempt_proof(
            agenda, accessible_vars, atoms, debug + 1
        ) and self._attempt_proof(new_agenda, accessible_vars, atoms, debug + 1)

    def _attempt_proof_imp(

        self, current, context, agenda, accessible_vars, atoms, debug

    ):
        new_agenda = agenda.clone()
        agenda.put(-current.first, context)
        new_agenda.put(current.second, context)
        return self._attempt_proof(
            agenda, accessible_vars, atoms, debug + 1
        ) and self._attempt_proof(new_agenda, accessible_vars, atoms, debug + 1)

    def _attempt_proof_n_and(

        self, current, context, agenda, accessible_vars, atoms, debug

    ):
        new_agenda = agenda.clone()
        agenda.put(-current.term.first, context)
        new_agenda.put(-current.term.second, context)
        return self._attempt_proof(
            agenda, accessible_vars, atoms, debug + 1
        ) and self._attempt_proof(new_agenda, accessible_vars, atoms, debug + 1)

    def _attempt_proof_iff(

        self, current, context, agenda, accessible_vars, atoms, debug

    ):
        new_agenda = agenda.clone()
        agenda.put(current.first, context)
        agenda.put(current.second, context)
        new_agenda.put(-current.first, context)
        new_agenda.put(-current.second, context)
        return self._attempt_proof(
            agenda, accessible_vars, atoms, debug + 1
        ) and self._attempt_proof(new_agenda, accessible_vars, atoms, debug + 1)

    def _attempt_proof_n_iff(

        self, current, context, agenda, accessible_vars, atoms, debug

    ):
        new_agenda = agenda.clone()
        agenda.put(current.term.first, context)
        agenda.put(-current.term.second, context)
        new_agenda.put(-current.term.first, context)
        new_agenda.put(current.term.second, context)
        return self._attempt_proof(
            agenda, accessible_vars, atoms, debug + 1
        ) and self._attempt_proof(new_agenda, accessible_vars, atoms, debug + 1)

    def _attempt_proof_eq(

        self, current, context, agenda, accessible_vars, atoms, debug

    ):
        #########################################################################
        # Since 'current' is of the form '(a = b)', replace ALL free instances
        # of 'a' with 'b'
        #########################################################################
        agenda.put_atoms(atoms)
        agenda.replace_all(current.first, current.second)
        accessible_vars.discard(current.first)
        agenda.mark_neqs_fresh()
        return self._attempt_proof(agenda, accessible_vars, set(), debug + 1)

    def _attempt_proof_some(

        self, current, context, agenda, accessible_vars, atoms, debug

    ):
        new_unique_variable = VariableExpression(unique_variable())
        agenda.put(current.term.replace(current.variable, new_unique_variable), context)
        agenda.mark_alls_fresh()
        return self._attempt_proof(
            agenda, accessible_vars | {new_unique_variable}, atoms, debug + 1
        )

    def _attempt_proof_all(

        self, current, context, agenda, accessible_vars, atoms, debug

    ):
        try:
            current._used_vars
        except AttributeError:
            current._used_vars = set()

        # if there are accessible_vars on the path
        if accessible_vars:
            # get the set of bound variables that have not be used by this AllExpression
            bv_available = accessible_vars - current._used_vars

            if bv_available:
                variable_to_use = list(bv_available)[0]
                debug.line("--> Using '%s'" % variable_to_use, 2)
                current._used_vars |= {variable_to_use}
                agenda.put(
                    current.term.replace(current.variable, variable_to_use), context
                )
                agenda[Categories.ALL].add((current, context))
                return self._attempt_proof(agenda, accessible_vars, atoms, debug + 1)

            else:
                # no more available variables to substitute
                debug.line("--> Variables Exhausted", 2)
                current._exhausted = True
                agenda[Categories.ALL].add((current, context))
                return self._attempt_proof(agenda, accessible_vars, atoms, debug + 1)

        else:
            new_unique_variable = VariableExpression(unique_variable())
            debug.line("--> Using '%s'" % new_unique_variable, 2)
            current._used_vars |= {new_unique_variable}
            agenda.put(
                current.term.replace(current.variable, new_unique_variable), context
            )
            agenda[Categories.ALL].add((current, context))
            agenda.mark_alls_fresh()
            return self._attempt_proof(
                agenda, accessible_vars | {new_unique_variable}, atoms, debug + 1
            )

    @staticmethod
    def is_atom(e):
        if isinstance(e, NegatedExpression):
            e = e.term

        if isinstance(e, ApplicationExpression):
            for arg in e.args:
                if not TableauProver.is_atom(arg):
                    return False
            return True
        elif isinstance(e, AbstractVariableExpression) or isinstance(
            e, LambdaExpression
        ):
            return True
        else:
            return False


class TableauProverCommand(BaseProverCommand):
    def __init__(self, goal=None, assumptions=None, prover=None):
        """

        :param goal: Input expression to prove

        :type goal: sem.Expression

        :param assumptions: Input expressions to use as assumptions in

            the proof.

        :type assumptions: list(sem.Expression)

        """
        if prover is not None:
            assert isinstance(prover, TableauProver)
        else:
            prover = TableauProver()

        BaseProverCommand.__init__(self, prover, goal, assumptions)


class Agenda:
    def __init__(self):
        self.sets = tuple(set() for i in range(21))

    def clone(self):
        new_agenda = Agenda()
        set_list = [s.copy() for s in self.sets]

        new_allExs = set()
        for allEx, _ in set_list[Categories.ALL]:
            new_allEx = AllExpression(allEx.variable, allEx.term)
            try:
                new_allEx._used_vars = {used for used in allEx._used_vars}
            except AttributeError:
                new_allEx._used_vars = set()
            new_allExs.add((new_allEx, None))
        set_list[Categories.ALL] = new_allExs

        set_list[Categories.N_EQ] = {
            (NegatedExpression(n_eq.term), ctx)
            for (n_eq, ctx) in set_list[Categories.N_EQ]
        }

        new_agenda.sets = tuple(set_list)
        return new_agenda

    def __getitem__(self, index):
        return self.sets[index]

    def put(self, expression, context=None):
        if isinstance(expression, AllExpression):
            ex_to_add = AllExpression(expression.variable, expression.term)
            try:
                ex_to_add._used_vars = {used for used in expression._used_vars}
            except AttributeError:
                ex_to_add._used_vars = set()
        else:
            ex_to_add = expression
        self.sets[self._categorize_expression(ex_to_add)].add((ex_to_add, context))

    def put_all(self, expressions):
        for expression in expressions:
            self.put(expression)

    def put_atoms(self, atoms):
        for atom, neg in atoms:
            if neg:
                self[Categories.N_ATOM].add((-atom, None))
            else:
                self[Categories.ATOM].add((atom, None))

    def pop_first(self):
        """Pop the first expression that appears in the agenda"""
        for i, s in enumerate(self.sets):
            if s:
                if i in [Categories.N_EQ, Categories.ALL]:
                    for ex in s:
                        try:
                            if not ex[0]._exhausted:
                                s.remove(ex)
                                return (ex, i)
                        except AttributeError:
                            s.remove(ex)
                            return (ex, i)
                else:
                    return (s.pop(), i)
        return ((None, None), None)

    def replace_all(self, old, new):
        for s in self.sets:
            for ex, ctx in s:
                ex.replace(old.variable, new)
                if ctx is not None:
                    ctx.replace(old.variable, new)

    def mark_alls_fresh(self):
        for u, _ in self.sets[Categories.ALL]:
            u._exhausted = False

    def mark_neqs_fresh(self):
        for neq, _ in self.sets[Categories.N_EQ]:
            neq._exhausted = False

    def _categorize_expression(self, current):
        if isinstance(current, NegatedExpression):
            return self._categorize_NegatedExpression(current)
        elif isinstance(current, FunctionVariableExpression):
            return Categories.PROP
        elif TableauProver.is_atom(current):
            return Categories.ATOM
        elif isinstance(current, AllExpression):
            return Categories.ALL
        elif isinstance(current, AndExpression):
            return Categories.AND
        elif isinstance(current, OrExpression):
            return Categories.OR
        elif isinstance(current, ImpExpression):
            return Categories.IMP
        elif isinstance(current, IffExpression):
            return Categories.IFF
        elif isinstance(current, EqualityExpression):
            return Categories.EQ
        elif isinstance(current, ExistsExpression):
            return Categories.EXISTS
        elif isinstance(current, ApplicationExpression):
            return Categories.APP
        else:
            raise ProverParseError("cannot categorize %s" % current.__class__.__name__)

    def _categorize_NegatedExpression(self, current):
        negated = current.term

        if isinstance(negated, NegatedExpression):
            return Categories.D_NEG
        elif isinstance(negated, FunctionVariableExpression):
            return Categories.N_PROP
        elif TableauProver.is_atom(negated):
            return Categories.N_ATOM
        elif isinstance(negated, AllExpression):
            return Categories.N_ALL
        elif isinstance(negated, AndExpression):
            return Categories.N_AND
        elif isinstance(negated, OrExpression):
            return Categories.N_OR
        elif isinstance(negated, ImpExpression):
            return Categories.N_IMP
        elif isinstance(negated, IffExpression):
            return Categories.N_IFF
        elif isinstance(negated, EqualityExpression):
            return Categories.N_EQ
        elif isinstance(negated, ExistsExpression):
            return Categories.N_EXISTS
        elif isinstance(negated, ApplicationExpression):
            return Categories.N_APP
        else:
            raise ProverParseError("cannot categorize %s" % negated.__class__.__name__)


class Debug:
    def __init__(self, verbose, indent=0, lines=None):
        self.verbose = verbose
        self.indent = indent

        if not lines:
            lines = []
        self.lines = lines

    def __add__(self, increment):
        return Debug(self.verbose, self.indent + 1, self.lines)

    def line(self, data, indent=0):
        if isinstance(data, tuple):
            ex, ctx = data
            if ctx:
                data = f"{ex}, {ctx}"
            else:
                data = "%s" % ex

            if isinstance(ex, AllExpression):
                try:
                    used_vars = "[%s]" % (
                        ",".join("%s" % ve.variable.name for ve in ex._used_vars)
                    )
                    data += ":   %s" % used_vars
                except AttributeError:
                    data += ":   []"

        newline = "{}{}".format("   " * (self.indent + indent), data)
        self.lines.append(newline)

        if self.verbose:
            print(newline)


class Categories:
    ATOM = 0
    PROP = 1
    N_ATOM = 2
    N_PROP = 3
    APP = 4
    N_APP = 5
    N_EQ = 6
    D_NEG = 7
    N_ALL = 8
    N_EXISTS = 9
    AND = 10
    N_OR = 11
    N_IMP = 12
    OR = 13
    IMP = 14
    N_AND = 15
    IFF = 16
    N_IFF = 17
    EQ = 18
    EXISTS = 19
    ALL = 20


def testTableauProver():
    tableau_test("P | -P")
    tableau_test("P & -P")
    tableau_test("Q", ["P", "(P -> Q)"])
    tableau_test("man(x)")
    tableau_test("(man(x) -> man(x))")
    tableau_test("(man(x) -> --man(x))")
    tableau_test("-(man(x) and -man(x))")
    tableau_test("(man(x) or -man(x))")
    tableau_test("(man(x) -> man(x))")
    tableau_test("-(man(x) and -man(x))")
    tableau_test("(man(x) or -man(x))")
    tableau_test("(man(x) -> man(x))")
    tableau_test("(man(x) iff man(x))")
    tableau_test("-(man(x) iff -man(x))")
    tableau_test("all x.man(x)")
    tableau_test("all x.all y.((x = y) -> (y = x))")
    tableau_test("all x.all y.all z.(((x = y) & (y = z)) -> (x = z))")
    #    tableau_test('-all x.some y.F(x,y) & some x.all y.(-F(x,y))')
    #    tableau_test('some x.all y.sees(x,y)')

    p1 = "all x.(man(x) -> mortal(x))"
    p2 = "man(Socrates)"
    c = "mortal(Socrates)"
    tableau_test(c, [p1, p2])

    p1 = "all x.(man(x) -> walks(x))"
    p2 = "man(John)"
    c = "some y.walks(y)"
    tableau_test(c, [p1, p2])

    p = "((x = y) & walks(y))"
    c = "walks(x)"
    tableau_test(c, [p])

    p = "((x = y) & ((y = z) & (z = w)))"
    c = "(x = w)"
    tableau_test(c, [p])

    p = "some e1.some e2.(believe(e1,john,e2) & walk(e2,mary))"
    c = "some e0.walk(e0,mary)"
    tableau_test(c, [p])

    c = "(exists x.exists z3.((x = Mary) & ((z3 = John) & sees(z3,x))) <-> exists x.exists z4.((x = John) & ((z4 = Mary) & sees(x,z4))))"
    tableau_test(c)


#    p = 'some e1.some e2.((believe e1 john e2) and (walk e2 mary))'
#    c = 'some x.some e3.some e4.((believe e3 x e4) and (walk e4 mary))'
#    tableau_test(c, [p])


def testHigherOrderTableauProver():
    tableau_test("believe(j, -lie(b))", ["believe(j, -lie(b) & -cheat(b))"])
    tableau_test("believe(j, lie(b) & cheat(b))", ["believe(j, lie(b))"])
    tableau_test(
        "believe(j, lie(b))", ["lie(b)"]
    )  # how do we capture that John believes all things that are true
    tableau_test(
        "believe(j, know(b, cheat(b)))",
        ["believe(j, know(b, lie(b)) & know(b, steals(b) & cheat(b)))"],
    )
    tableau_test("P(Q(y), R(y) & R(z))", ["P(Q(x) & Q(y), R(y) & R(z))"])

    tableau_test("believe(j, cheat(b) & lie(b))", ["believe(j, lie(b) & cheat(b))"])
    tableau_test("believe(j, -cheat(b) & -lie(b))", ["believe(j, -lie(b) & -cheat(b))"])


def tableau_test(c, ps=None, verbose=False):
    pc = Expression.fromstring(c)
    pps = [Expression.fromstring(p) for p in ps] if ps else []
    if not ps:
        ps = []
    print(
        "%s |- %s: %s"
        % (", ".join(ps), pc, TableauProver().prove(pc, pps, verbose=verbose))
    )


def demo():
    testTableauProver()
    testHigherOrderTableauProver()


if __name__ == "__main__":
    demo()