File size: 18,274 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
# Natural Language Toolkit: An Incremental Earley Chart Parser
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Peter Ljunglöf <[email protected]>
#         Rob Speer <[email protected]>
#         Edward Loper <[email protected]>
#         Steven Bird <[email protected]>
#         Jean Mark Gawron <[email protected]>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT

"""

Data classes and parser implementations for *incremental* chart

parsers, which use dynamic programming to efficiently parse a text.

A "chart parser" derives parse trees for a text by iteratively adding

\"edges\" to a \"chart\".  Each "edge" represents a hypothesis about the tree

structure for a subsequence of the text.  The "chart" is a

\"blackboard\" for composing and combining these hypotheses.



A parser is "incremental", if it guarantees that for all i, j where i < j,

all edges ending at i are built before any edges ending at j.

This is appealing for, say, speech recognizer hypothesis filtering.



The main parser class is ``EarleyChartParser``, which is a top-down

algorithm, originally formulated by Jay Earley (1970).

"""

from time import perf_counter

from nltk.parse.chart import (
    BottomUpPredictCombineRule,
    BottomUpPredictRule,
    CachedTopDownPredictRule,
    Chart,
    ChartParser,
    EdgeI,
    EmptyPredictRule,
    FilteredBottomUpPredictCombineRule,
    FilteredSingleEdgeFundamentalRule,
    LeafEdge,
    LeafInitRule,
    SingleEdgeFundamentalRule,
    TopDownInitRule,
)
from nltk.parse.featurechart import (
    FeatureBottomUpPredictCombineRule,
    FeatureBottomUpPredictRule,
    FeatureChart,
    FeatureChartParser,
    FeatureEmptyPredictRule,
    FeatureSingleEdgeFundamentalRule,
    FeatureTopDownInitRule,
    FeatureTopDownPredictRule,
)

# ////////////////////////////////////////////////////////////
# Incremental Chart
# ////////////////////////////////////////////////////////////


class IncrementalChart(Chart):
    def initialize(self):
        # A sequence of edge lists contained in this chart.
        self._edgelists = tuple([] for x in self._positions())

        # The set of child pointer lists associated with each edge.
        self._edge_to_cpls = {}

        # Indexes mapping attribute values to lists of edges
        # (used by select()).
        self._indexes = {}

    def edges(self):
        return list(self.iteredges())

    def iteredges(self):
        return (edge for edgelist in self._edgelists for edge in edgelist)

    def select(self, end, **restrictions):
        edgelist = self._edgelists[end]

        # If there are no restrictions, then return all edges.
        if restrictions == {}:
            return iter(edgelist)

        # Find the index corresponding to the given restrictions.
        restr_keys = sorted(restrictions.keys())
        restr_keys = tuple(restr_keys)

        # If it doesn't exist, then create it.
        if restr_keys not in self._indexes:
            self._add_index(restr_keys)

        vals = tuple(restrictions[key] for key in restr_keys)
        return iter(self._indexes[restr_keys][end].get(vals, []))

    def _add_index(self, restr_keys):
        # Make sure it's a valid index.
        for key in restr_keys:
            if not hasattr(EdgeI, key):
                raise ValueError("Bad restriction: %s" % key)

        # Create the index.
        index = self._indexes[restr_keys] = tuple({} for x in self._positions())

        # Add all existing edges to the index.
        for end, edgelist in enumerate(self._edgelists):
            this_index = index[end]
            for edge in edgelist:
                vals = tuple(getattr(edge, key)() for key in restr_keys)
                this_index.setdefault(vals, []).append(edge)

    def _register_with_indexes(self, edge):
        end = edge.end()
        for (restr_keys, index) in self._indexes.items():
            vals = tuple(getattr(edge, key)() for key in restr_keys)
            index[end].setdefault(vals, []).append(edge)

    def _append_edge(self, edge):
        self._edgelists[edge.end()].append(edge)

    def _positions(self):
        return range(self.num_leaves() + 1)


class FeatureIncrementalChart(IncrementalChart, FeatureChart):
    def select(self, end, **restrictions):
        edgelist = self._edgelists[end]

        # If there are no restrictions, then return all edges.
        if restrictions == {}:
            return iter(edgelist)

        # Find the index corresponding to the given restrictions.
        restr_keys = sorted(restrictions.keys())
        restr_keys = tuple(restr_keys)

        # If it doesn't exist, then create it.
        if restr_keys not in self._indexes:
            self._add_index(restr_keys)

        vals = tuple(
            self._get_type_if_possible(restrictions[key]) for key in restr_keys
        )
        return iter(self._indexes[restr_keys][end].get(vals, []))

    def _add_index(self, restr_keys):
        # Make sure it's a valid index.
        for key in restr_keys:
            if not hasattr(EdgeI, key):
                raise ValueError("Bad restriction: %s" % key)

        # Create the index.
        index = self._indexes[restr_keys] = tuple({} for x in self._positions())

        # Add all existing edges to the index.
        for end, edgelist in enumerate(self._edgelists):
            this_index = index[end]
            for edge in edgelist:
                vals = tuple(
                    self._get_type_if_possible(getattr(edge, key)())
                    for key in restr_keys
                )
                this_index.setdefault(vals, []).append(edge)

    def _register_with_indexes(self, edge):
        end = edge.end()
        for (restr_keys, index) in self._indexes.items():
            vals = tuple(
                self._get_type_if_possible(getattr(edge, key)()) for key in restr_keys
            )
            index[end].setdefault(vals, []).append(edge)


# ////////////////////////////////////////////////////////////
# Incremental CFG Rules
# ////////////////////////////////////////////////////////////


class CompleteFundamentalRule(SingleEdgeFundamentalRule):
    def _apply_incomplete(self, chart, grammar, left_edge):
        end = left_edge.end()
        # When the chart is incremental, we only have to look for
        # empty complete edges here.
        for right_edge in chart.select(
            start=end, end=end, is_complete=True, lhs=left_edge.nextsym()
        ):
            new_edge = left_edge.move_dot_forward(right_edge.end())
            if chart.insert_with_backpointer(new_edge, left_edge, right_edge):
                yield new_edge


class CompleterRule(CompleteFundamentalRule):
    _fundamental_rule = CompleteFundamentalRule()

    def apply(self, chart, grammar, edge):
        if not isinstance(edge, LeafEdge):
            yield from self._fundamental_rule.apply(chart, grammar, edge)


class ScannerRule(CompleteFundamentalRule):
    _fundamental_rule = CompleteFundamentalRule()

    def apply(self, chart, grammar, edge):
        if isinstance(edge, LeafEdge):
            yield from self._fundamental_rule.apply(chart, grammar, edge)


class PredictorRule(CachedTopDownPredictRule):
    pass


class FilteredCompleteFundamentalRule(FilteredSingleEdgeFundamentalRule):
    def apply(self, chart, grammar, edge):
        # Since the Filtered rule only works for grammars without empty productions,
        # we only have to bother with complete edges here.
        if edge.is_complete():
            yield from self._apply_complete(chart, grammar, edge)


# ////////////////////////////////////////////////////////////
# Incremental FCFG Rules
# ////////////////////////////////////////////////////////////


class FeatureCompleteFundamentalRule(FeatureSingleEdgeFundamentalRule):
    def _apply_incomplete(self, chart, grammar, left_edge):
        fr = self._fundamental_rule
        end = left_edge.end()
        # When the chart is incremental, we only have to look for
        # empty complete edges here.
        for right_edge in chart.select(
            start=end, end=end, is_complete=True, lhs=left_edge.nextsym()
        ):
            yield from fr.apply(chart, grammar, left_edge, right_edge)


class FeatureCompleterRule(CompleterRule):
    _fundamental_rule = FeatureCompleteFundamentalRule()


class FeatureScannerRule(ScannerRule):
    _fundamental_rule = FeatureCompleteFundamentalRule()


class FeaturePredictorRule(FeatureTopDownPredictRule):
    pass


# ////////////////////////////////////////////////////////////
# Incremental CFG Chart Parsers
# ////////////////////////////////////////////////////////////

EARLEY_STRATEGY = [
    LeafInitRule(),
    TopDownInitRule(),
    CompleterRule(),
    ScannerRule(),
    PredictorRule(),
]
TD_INCREMENTAL_STRATEGY = [
    LeafInitRule(),
    TopDownInitRule(),
    CachedTopDownPredictRule(),
    CompleteFundamentalRule(),
]
BU_INCREMENTAL_STRATEGY = [
    LeafInitRule(),
    EmptyPredictRule(),
    BottomUpPredictRule(),
    CompleteFundamentalRule(),
]
BU_LC_INCREMENTAL_STRATEGY = [
    LeafInitRule(),
    EmptyPredictRule(),
    BottomUpPredictCombineRule(),
    CompleteFundamentalRule(),
]

LC_INCREMENTAL_STRATEGY = [
    LeafInitRule(),
    FilteredBottomUpPredictCombineRule(),
    FilteredCompleteFundamentalRule(),
]


class IncrementalChartParser(ChartParser):
    """

    An *incremental* chart parser implementing Jay Earley's

    parsing algorithm:



    | For each index end in [0, 1, ..., N]:

    |   For each edge such that edge.end = end:

    |     If edge is incomplete and edge.next is not a part of speech:

    |       Apply PredictorRule to edge

    |     If edge is incomplete and edge.next is a part of speech:

    |       Apply ScannerRule to edge

    |     If edge is complete:

    |       Apply CompleterRule to edge

    | Return any complete parses in the chart

    """

    def __init__(

        self,

        grammar,

        strategy=BU_LC_INCREMENTAL_STRATEGY,

        trace=0,

        trace_chart_width=50,

        chart_class=IncrementalChart,

    ):
        """

        Create a new Earley chart parser, that uses ``grammar`` to

        parse texts.



        :type grammar: CFG

        :param grammar: The grammar used to parse texts.

        :type trace: int

        :param trace: The level of tracing that should be used when

            parsing a text.  ``0`` will generate no tracing output;

            and higher numbers will produce more verbose tracing

            output.

        :type trace_chart_width: int

        :param trace_chart_width: The default total width reserved for

            the chart in trace output.  The remainder of each line will

            be used to display edges.

        :param chart_class: The class that should be used to create

            the charts used by this parser.

        """
        self._grammar = grammar
        self._trace = trace
        self._trace_chart_width = trace_chart_width
        self._chart_class = chart_class

        self._axioms = []
        self._inference_rules = []
        for rule in strategy:
            if rule.NUM_EDGES == 0:
                self._axioms.append(rule)
            elif rule.NUM_EDGES == 1:
                self._inference_rules.append(rule)
            else:
                raise ValueError(
                    "Incremental inference rules must have " "NUM_EDGES == 0 or 1"
                )

    def chart_parse(self, tokens, trace=None):
        if trace is None:
            trace = self._trace
        trace_new_edges = self._trace_new_edges

        tokens = list(tokens)
        self._grammar.check_coverage(tokens)
        chart = self._chart_class(tokens)
        grammar = self._grammar

        # Width, for printing trace edges.
        trace_edge_width = self._trace_chart_width // (chart.num_leaves() + 1)
        if trace:
            print(chart.pretty_format_leaves(trace_edge_width))

        for axiom in self._axioms:
            new_edges = list(axiom.apply(chart, grammar))
            trace_new_edges(chart, axiom, new_edges, trace, trace_edge_width)

        inference_rules = self._inference_rules
        for end in range(chart.num_leaves() + 1):
            if trace > 1:
                print("\n* Processing queue:", end, "\n")
            agenda = list(chart.select(end=end))
            while agenda:
                edge = agenda.pop()
                for rule in inference_rules:
                    new_edges = list(rule.apply(chart, grammar, edge))
                    trace_new_edges(chart, rule, new_edges, trace, trace_edge_width)
                    for new_edge in new_edges:
                        if new_edge.end() == end:
                            agenda.append(new_edge)

        return chart


class EarleyChartParser(IncrementalChartParser):
    def __init__(self, grammar, **parser_args):
        IncrementalChartParser.__init__(self, grammar, EARLEY_STRATEGY, **parser_args)


class IncrementalTopDownChartParser(IncrementalChartParser):
    def __init__(self, grammar, **parser_args):
        IncrementalChartParser.__init__(
            self, grammar, TD_INCREMENTAL_STRATEGY, **parser_args
        )


class IncrementalBottomUpChartParser(IncrementalChartParser):
    def __init__(self, grammar, **parser_args):
        IncrementalChartParser.__init__(
            self, grammar, BU_INCREMENTAL_STRATEGY, **parser_args
        )


class IncrementalBottomUpLeftCornerChartParser(IncrementalChartParser):
    def __init__(self, grammar, **parser_args):
        IncrementalChartParser.__init__(
            self, grammar, BU_LC_INCREMENTAL_STRATEGY, **parser_args
        )


class IncrementalLeftCornerChartParser(IncrementalChartParser):
    def __init__(self, grammar, **parser_args):
        if not grammar.is_nonempty():
            raise ValueError(
                "IncrementalLeftCornerParser only works for grammars "
                "without empty productions."
            )
        IncrementalChartParser.__init__(
            self, grammar, LC_INCREMENTAL_STRATEGY, **parser_args
        )


# ////////////////////////////////////////////////////////////
# Incremental FCFG Chart Parsers
# ////////////////////////////////////////////////////////////

EARLEY_FEATURE_STRATEGY = [
    LeafInitRule(),
    FeatureTopDownInitRule(),
    FeatureCompleterRule(),
    FeatureScannerRule(),
    FeaturePredictorRule(),
]
TD_INCREMENTAL_FEATURE_STRATEGY = [
    LeafInitRule(),
    FeatureTopDownInitRule(),
    FeatureTopDownPredictRule(),
    FeatureCompleteFundamentalRule(),
]
BU_INCREMENTAL_FEATURE_STRATEGY = [
    LeafInitRule(),
    FeatureEmptyPredictRule(),
    FeatureBottomUpPredictRule(),
    FeatureCompleteFundamentalRule(),
]
BU_LC_INCREMENTAL_FEATURE_STRATEGY = [
    LeafInitRule(),
    FeatureEmptyPredictRule(),
    FeatureBottomUpPredictCombineRule(),
    FeatureCompleteFundamentalRule(),
]


class FeatureIncrementalChartParser(IncrementalChartParser, FeatureChartParser):
    def __init__(

        self,

        grammar,

        strategy=BU_LC_INCREMENTAL_FEATURE_STRATEGY,

        trace_chart_width=20,

        chart_class=FeatureIncrementalChart,

        **parser_args

    ):
        IncrementalChartParser.__init__(
            self,
            grammar,
            strategy=strategy,
            trace_chart_width=trace_chart_width,
            chart_class=chart_class,
            **parser_args
        )


class FeatureEarleyChartParser(FeatureIncrementalChartParser):
    def __init__(self, grammar, **parser_args):
        FeatureIncrementalChartParser.__init__(
            self, grammar, EARLEY_FEATURE_STRATEGY, **parser_args
        )


class FeatureIncrementalTopDownChartParser(FeatureIncrementalChartParser):
    def __init__(self, grammar, **parser_args):
        FeatureIncrementalChartParser.__init__(
            self, grammar, TD_INCREMENTAL_FEATURE_STRATEGY, **parser_args
        )


class FeatureIncrementalBottomUpChartParser(FeatureIncrementalChartParser):
    def __init__(self, grammar, **parser_args):
        FeatureIncrementalChartParser.__init__(
            self, grammar, BU_INCREMENTAL_FEATURE_STRATEGY, **parser_args
        )


class FeatureIncrementalBottomUpLeftCornerChartParser(FeatureIncrementalChartParser):
    def __init__(self, grammar, **parser_args):
        FeatureIncrementalChartParser.__init__(
            self, grammar, BU_LC_INCREMENTAL_FEATURE_STRATEGY, **parser_args
        )


# ////////////////////////////////////////////////////////////
# Demonstration
# ////////////////////////////////////////////////////////////


def demo(

    print_times=True,

    print_grammar=False,

    print_trees=True,

    trace=2,

    sent="I saw John with a dog with my cookie",

    numparses=5,

):
    """

    A demonstration of the Earley parsers.

    """
    import sys
    import time

    from nltk.parse.chart import demo_grammar

    # The grammar for ChartParser and SteppingChartParser:
    grammar = demo_grammar()
    if print_grammar:
        print("* Grammar")
        print(grammar)

    # Tokenize the sample sentence.
    print("* Sentence:")
    print(sent)
    tokens = sent.split()
    print(tokens)
    print()

    # Do the parsing.
    earley = EarleyChartParser(grammar, trace=trace)
    t = perf_counter()
    chart = earley.chart_parse(tokens)
    parses = list(chart.parses(grammar.start()))
    t = perf_counter() - t

    # Print results.
    if numparses:
        assert len(parses) == numparses, "Not all parses found"
    if print_trees:
        for tree in parses:
            print(tree)
    else:
        print("Nr trees:", len(parses))
    if print_times:
        print("Time:", t)


if __name__ == "__main__":
    demo()