File size: 19,312 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
# Natural Language Toolkit: Interface to the Stanford Parser
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Steven Xu <[email protected]>
#
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT

import os
import tempfile
import warnings
from subprocess import PIPE

from nltk.internals import (
    _java_options,
    config_java,
    find_jar_iter,
    find_jars_within_path,
    java,
)
from nltk.parse.api import ParserI
from nltk.parse.dependencygraph import DependencyGraph
from nltk.tree import Tree

_stanford_url = "https://nlp.stanford.edu/software/lex-parser.shtml"


class GenericStanfordParser(ParserI):
    """Interface to the Stanford Parser"""

    _MODEL_JAR_PATTERN = r"stanford-parser-(\d+)(\.(\d+))+-models\.jar"
    _JAR = r"stanford-parser\.jar"
    _MAIN_CLASS = "edu.stanford.nlp.parser.lexparser.LexicalizedParser"

    _USE_STDIN = False
    _DOUBLE_SPACED_OUTPUT = False

    def __init__(

        self,

        path_to_jar=None,

        path_to_models_jar=None,

        model_path="edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz",

        encoding="utf8",

        verbose=False,

        java_options="-mx4g",

        corenlp_options="",

    ):

        # find the most recent code and model jar
        stanford_jar = max(
            find_jar_iter(
                self._JAR,
                path_to_jar,
                env_vars=("STANFORD_PARSER", "STANFORD_CORENLP"),
                searchpath=(),
                url=_stanford_url,
                verbose=verbose,
                is_regex=True,
            ),
            key=lambda model_path: os.path.dirname(model_path),
        )

        model_jar = max(
            find_jar_iter(
                self._MODEL_JAR_PATTERN,
                path_to_models_jar,
                env_vars=("STANFORD_MODELS", "STANFORD_CORENLP"),
                searchpath=(),
                url=_stanford_url,
                verbose=verbose,
                is_regex=True,
            ),
            key=lambda model_path: os.path.dirname(model_path),
        )

        # self._classpath = (stanford_jar, model_jar)

        # Adding logging jar files to classpath
        stanford_dir = os.path.split(stanford_jar)[0]
        self._classpath = tuple([model_jar] + find_jars_within_path(stanford_dir))

        self.model_path = model_path
        self._encoding = encoding
        self.corenlp_options = corenlp_options
        self.java_options = java_options

    def _parse_trees_output(self, output_):
        res = []
        cur_lines = []
        cur_trees = []
        blank = False
        for line in output_.splitlines(False):
            if line == "":
                if blank:
                    res.append(iter(cur_trees))
                    cur_trees = []
                    blank = False
                elif self._DOUBLE_SPACED_OUTPUT:
                    cur_trees.append(self._make_tree("\n".join(cur_lines)))
                    cur_lines = []
                    blank = True
                else:
                    res.append(iter([self._make_tree("\n".join(cur_lines))]))
                    cur_lines = []
            else:
                cur_lines.append(line)
                blank = False
        return iter(res)

    def parse_sents(self, sentences, verbose=False):
        """

        Use StanfordParser to parse multiple sentences. Takes multiple sentences as a

        list where each sentence is a list of words.

        Each sentence will be automatically tagged with this StanfordParser instance's

        tagger.

        If whitespaces exists inside a token, then the token will be treated as

        separate tokens.



        :param sentences: Input sentences to parse

        :type sentences: list(list(str))

        :rtype: iter(iter(Tree))

        """
        cmd = [
            self._MAIN_CLASS,
            "-model",
            self.model_path,
            "-sentences",
            "newline",
            "-outputFormat",
            self._OUTPUT_FORMAT,
            "-tokenized",
            "-escaper",
            "edu.stanford.nlp.process.PTBEscapingProcessor",
        ]
        return self._parse_trees_output(
            self._execute(
                cmd, "\n".join(" ".join(sentence) for sentence in sentences), verbose
            )
        )

    def raw_parse(self, sentence, verbose=False):
        """

        Use StanfordParser to parse a sentence. Takes a sentence as a string;

        before parsing, it will be automatically tokenized and tagged by

        the Stanford Parser.



        :param sentence: Input sentence to parse

        :type sentence: str

        :rtype: iter(Tree)

        """
        return next(self.raw_parse_sents([sentence], verbose))

    def raw_parse_sents(self, sentences, verbose=False):
        """

        Use StanfordParser to parse multiple sentences. Takes multiple sentences as a

        list of strings.

        Each sentence will be automatically tokenized and tagged by the Stanford Parser.



        :param sentences: Input sentences to parse

        :type sentences: list(str)

        :rtype: iter(iter(Tree))

        """
        cmd = [
            self._MAIN_CLASS,
            "-model",
            self.model_path,
            "-sentences",
            "newline",
            "-outputFormat",
            self._OUTPUT_FORMAT,
        ]
        return self._parse_trees_output(
            self._execute(cmd, "\n".join(sentences), verbose)
        )

    def tagged_parse(self, sentence, verbose=False):
        """

        Use StanfordParser to parse a sentence. Takes a sentence as a list of

        (word, tag) tuples; the sentence must have already been tokenized and

        tagged.



        :param sentence: Input sentence to parse

        :type sentence: list(tuple(str, str))

        :rtype: iter(Tree)

        """
        return next(self.tagged_parse_sents([sentence], verbose))

    def tagged_parse_sents(self, sentences, verbose=False):
        """

        Use StanfordParser to parse multiple sentences. Takes multiple sentences

        where each sentence is a list of (word, tag) tuples.

        The sentences must have already been tokenized and tagged.



        :param sentences: Input sentences to parse

        :type sentences: list(list(tuple(str, str)))

        :rtype: iter(iter(Tree))

        """
        tag_separator = "/"
        cmd = [
            self._MAIN_CLASS,
            "-model",
            self.model_path,
            "-sentences",
            "newline",
            "-outputFormat",
            self._OUTPUT_FORMAT,
            "-tokenized",
            "-tagSeparator",
            tag_separator,
            "-tokenizerFactory",
            "edu.stanford.nlp.process.WhitespaceTokenizer",
            "-tokenizerMethod",
            "newCoreLabelTokenizerFactory",
        ]
        # We don't need to escape slashes as "splitting is done on the last instance of the character in the token"
        return self._parse_trees_output(
            self._execute(
                cmd,
                "\n".join(
                    " ".join(tag_separator.join(tagged) for tagged in sentence)
                    for sentence in sentences
                ),
                verbose,
            )
        )

    def _execute(self, cmd, input_, verbose=False):
        encoding = self._encoding
        cmd.extend(["-encoding", encoding])
        if self.corenlp_options:
            cmd.extend(self.corenlp_options.split())

        default_options = " ".join(_java_options)

        # Configure java.
        config_java(options=self.java_options, verbose=verbose)

        # Windows is incompatible with NamedTemporaryFile() without passing in delete=False.
        with tempfile.NamedTemporaryFile(mode="wb", delete=False) as input_file:
            # Write the actual sentences to the temporary input file
            if isinstance(input_, str) and encoding:
                input_ = input_.encode(encoding)
            input_file.write(input_)
            input_file.flush()

            # Run the tagger and get the output.
            if self._USE_STDIN:
                input_file.seek(0)
                stdout, stderr = java(
                    cmd,
                    classpath=self._classpath,
                    stdin=input_file,
                    stdout=PIPE,
                    stderr=PIPE,
                )
            else:
                cmd.append(input_file.name)
                stdout, stderr = java(
                    cmd, classpath=self._classpath, stdout=PIPE, stderr=PIPE
                )

            stdout = stdout.replace(b"\xc2\xa0", b" ")
            stdout = stdout.replace(b"\x00\xa0", b" ")
            stdout = stdout.decode(encoding)

        os.unlink(input_file.name)

        # Return java configurations to their default values.
        config_java(options=default_options, verbose=False)

        return stdout


class StanfordParser(GenericStanfordParser):
    """

    >>> parser=StanfordParser(

    ...     model_path="edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz"

    ... ) # doctest: +SKIP



    >>> list(parser.raw_parse("the quick brown fox jumps over the lazy dog")) # doctest: +NORMALIZE_WHITESPACE +SKIP

    [Tree('ROOT', [Tree('NP', [Tree('NP', [Tree('DT', ['the']), Tree('JJ', ['quick']), Tree('JJ', ['brown']),

    Tree('NN', ['fox'])]), Tree('NP', [Tree('NP', [Tree('NNS', ['jumps'])]), Tree('PP', [Tree('IN', ['over']),

    Tree('NP', [Tree('DT', ['the']), Tree('JJ', ['lazy']), Tree('NN', ['dog'])])])])])])]



    >>> sum([list(dep_graphs) for dep_graphs in parser.raw_parse_sents((

    ...     "the quick brown fox jumps over the lazy dog",

    ...     "the quick grey wolf jumps over the lazy fox"

    ... ))], []) # doctest: +NORMALIZE_WHITESPACE +SKIP

    [Tree('ROOT', [Tree('NP', [Tree('NP', [Tree('DT', ['the']), Tree('JJ', ['quick']), Tree('JJ', ['brown']),

    Tree('NN', ['fox'])]), Tree('NP', [Tree('NP', [Tree('NNS', ['jumps'])]), Tree('PP', [Tree('IN', ['over']),

    Tree('NP', [Tree('DT', ['the']), Tree('JJ', ['lazy']), Tree('NN', ['dog'])])])])])]), Tree('ROOT', [Tree('NP',

    [Tree('NP', [Tree('DT', ['the']), Tree('JJ', ['quick']), Tree('JJ', ['grey']), Tree('NN', ['wolf'])]), Tree('NP',

    [Tree('NP', [Tree('NNS', ['jumps'])]), Tree('PP', [Tree('IN', ['over']), Tree('NP', [Tree('DT', ['the']),

    Tree('JJ', ['lazy']), Tree('NN', ['fox'])])])])])])]



    >>> sum([list(dep_graphs) for dep_graphs in parser.parse_sents((

    ...     "I 'm a dog".split(),

    ...     "This is my friends ' cat ( the tabby )".split(),

    ... ))], []) # doctest: +NORMALIZE_WHITESPACE +SKIP

    [Tree('ROOT', [Tree('S', [Tree('NP', [Tree('PRP', ['I'])]), Tree('VP', [Tree('VBP', ["'m"]),

    Tree('NP', [Tree('DT', ['a']), Tree('NN', ['dog'])])])])]), Tree('ROOT', [Tree('S', [Tree('NP',

    [Tree('DT', ['This'])]), Tree('VP', [Tree('VBZ', ['is']), Tree('NP', [Tree('NP', [Tree('NP', [Tree('PRP$', ['my']),

    Tree('NNS', ['friends']), Tree('POS', ["'"])]), Tree('NN', ['cat'])]), Tree('PRN', [Tree('-LRB-', [Tree('', []),

    Tree('NP', [Tree('DT', ['the']), Tree('NN', ['tabby'])]), Tree('-RRB-', [])])])])])])])]



    >>> sum([list(dep_graphs) for dep_graphs in parser.tagged_parse_sents((

    ...     (

    ...         ("The", "DT"),

    ...         ("quick", "JJ"),

    ...         ("brown", "JJ"),

    ...         ("fox", "NN"),

    ...         ("jumped", "VBD"),

    ...         ("over", "IN"),

    ...         ("the", "DT"),

    ...         ("lazy", "JJ"),

    ...         ("dog", "NN"),

    ...         (".", "."),

    ...     ),

    ... ))],[]) # doctest: +NORMALIZE_WHITESPACE +SKIP

    [Tree('ROOT', [Tree('S', [Tree('NP', [Tree('DT', ['The']), Tree('JJ', ['quick']), Tree('JJ', ['brown']),

    Tree('NN', ['fox'])]), Tree('VP', [Tree('VBD', ['jumped']), Tree('PP', [Tree('IN', ['over']), Tree('NP',

    [Tree('DT', ['the']), Tree('JJ', ['lazy']), Tree('NN', ['dog'])])])]), Tree('.', ['.'])])])]

    """

    _OUTPUT_FORMAT = "penn"

    def __init__(self, *args, **kwargs):
        warnings.warn(
            "The StanfordParser will be deprecated\n"
            "Please use \033[91mnltk.parse.corenlp.CoreNLPParser\033[0m instead.",
            DeprecationWarning,
            stacklevel=2,
        )

        super().__init__(*args, **kwargs)

    def _make_tree(self, result):
        return Tree.fromstring(result)


class StanfordDependencyParser(GenericStanfordParser):

    """

    >>> dep_parser=StanfordDependencyParser(

    ...     model_path="edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz"

    ... ) # doctest: +SKIP



    >>> [parse.tree() for parse in dep_parser.raw_parse("The quick brown fox jumps over the lazy dog.")] # doctest: +NORMALIZE_WHITESPACE +SKIP

    [Tree('jumps', [Tree('fox', ['The', 'quick', 'brown']), Tree('dog', ['over', 'the', 'lazy'])])]



    >>> [list(parse.triples()) for parse in dep_parser.raw_parse("The quick brown fox jumps over the lazy dog.")] # doctest: +NORMALIZE_WHITESPACE +SKIP

    [[((u'jumps', u'VBZ'), u'nsubj', (u'fox', u'NN')), ((u'fox', u'NN'), u'det', (u'The', u'DT')),

    ((u'fox', u'NN'), u'amod', (u'quick', u'JJ')), ((u'fox', u'NN'), u'amod', (u'brown', u'JJ')),

    ((u'jumps', u'VBZ'), u'nmod', (u'dog', u'NN')), ((u'dog', u'NN'), u'case', (u'over', u'IN')),

    ((u'dog', u'NN'), u'det', (u'the', u'DT')), ((u'dog', u'NN'), u'amod', (u'lazy', u'JJ'))]]



    >>> sum([[parse.tree() for parse in dep_graphs] for dep_graphs in dep_parser.raw_parse_sents((

    ...     "The quick brown fox jumps over the lazy dog.",

    ...     "The quick grey wolf jumps over the lazy fox."

    ... ))], []) # doctest: +NORMALIZE_WHITESPACE +SKIP

    [Tree('jumps', [Tree('fox', ['The', 'quick', 'brown']), Tree('dog', ['over', 'the', 'lazy'])]),

    Tree('jumps', [Tree('wolf', ['The', 'quick', 'grey']), Tree('fox', ['over', 'the', 'lazy'])])]



    >>> sum([[parse.tree() for parse in dep_graphs] for dep_graphs in dep_parser.parse_sents((

    ...     "I 'm a dog".split(),

    ...     "This is my friends ' cat ( the tabby )".split(),

    ... ))], []) # doctest: +NORMALIZE_WHITESPACE +SKIP

    [Tree('dog', ['I', "'m", 'a']), Tree('cat', ['This', 'is', Tree('friends', ['my', "'"]), Tree('tabby', ['the'])])]



    >>> sum([[list(parse.triples()) for parse in dep_graphs] for dep_graphs in dep_parser.tagged_parse_sents((

    ...     (

    ...         ("The", "DT"),

    ...         ("quick", "JJ"),

    ...         ("brown", "JJ"),

    ...         ("fox", "NN"),

    ...         ("jumped", "VBD"),

    ...         ("over", "IN"),

    ...         ("the", "DT"),

    ...         ("lazy", "JJ"),

    ...         ("dog", "NN"),

    ...         (".", "."),

    ...     ),

    ... ))],[]) # doctest: +NORMALIZE_WHITESPACE +SKIP

    [[((u'jumped', u'VBD'), u'nsubj', (u'fox', u'NN')), ((u'fox', u'NN'), u'det', (u'The', u'DT')),

    ((u'fox', u'NN'), u'amod', (u'quick', u'JJ')), ((u'fox', u'NN'), u'amod', (u'brown', u'JJ')),

    ((u'jumped', u'VBD'), u'nmod', (u'dog', u'NN')), ((u'dog', u'NN'), u'case', (u'over', u'IN')),

    ((u'dog', u'NN'), u'det', (u'the', u'DT')), ((u'dog', u'NN'), u'amod', (u'lazy', u'JJ'))]]



    """

    _OUTPUT_FORMAT = "conll2007"

    def __init__(self, *args, **kwargs):
        warnings.warn(
            "The StanfordDependencyParser will be deprecated\n"
            "Please use \033[91mnltk.parse.corenlp.CoreNLPDependencyParser\033[0m instead.",
            DeprecationWarning,
            stacklevel=2,
        )

        super().__init__(*args, **kwargs)

    def _make_tree(self, result):
        return DependencyGraph(result, top_relation_label="root")


class StanfordNeuralDependencyParser(GenericStanfordParser):
    """

    >>> from nltk.parse.stanford import StanfordNeuralDependencyParser # doctest: +SKIP

    >>> dep_parser=StanfordNeuralDependencyParser(java_options='-mx4g')# doctest: +SKIP



    >>> [parse.tree() for parse in dep_parser.raw_parse("The quick brown fox jumps over the lazy dog.")] # doctest: +NORMALIZE_WHITESPACE +SKIP

    [Tree('jumps', [Tree('fox', ['The', 'quick', 'brown']), Tree('dog', ['over', 'the', 'lazy']), '.'])]



    >>> [list(parse.triples()) for parse in dep_parser.raw_parse("The quick brown fox jumps over the lazy dog.")] # doctest: +NORMALIZE_WHITESPACE +SKIP

    [[((u'jumps', u'VBZ'), u'nsubj', (u'fox', u'NN')), ((u'fox', u'NN'), u'det',

    (u'The', u'DT')), ((u'fox', u'NN'), u'amod', (u'quick', u'JJ')), ((u'fox', u'NN'),

    u'amod', (u'brown', u'JJ')), ((u'jumps', u'VBZ'), u'nmod', (u'dog', u'NN')),

    ((u'dog', u'NN'), u'case', (u'over', u'IN')), ((u'dog', u'NN'), u'det',

    (u'the', u'DT')), ((u'dog', u'NN'), u'amod', (u'lazy', u'JJ')), ((u'jumps', u'VBZ'),

    u'punct', (u'.', u'.'))]]



    >>> sum([[parse.tree() for parse in dep_graphs] for dep_graphs in dep_parser.raw_parse_sents((

    ...     "The quick brown fox jumps over the lazy dog.",

    ...     "The quick grey wolf jumps over the lazy fox."

    ... ))], []) # doctest: +NORMALIZE_WHITESPACE +SKIP

    [Tree('jumps', [Tree('fox', ['The', 'quick', 'brown']), Tree('dog', ['over',

    'the', 'lazy']), '.']), Tree('jumps', [Tree('wolf', ['The', 'quick', 'grey']),

    Tree('fox', ['over', 'the', 'lazy']), '.'])]



    >>> sum([[parse.tree() for parse in dep_graphs] for dep_graphs in dep_parser.parse_sents((

    ...     "I 'm a dog".split(),

    ...     "This is my friends ' cat ( the tabby )".split(),

    ... ))], []) # doctest: +NORMALIZE_WHITESPACE +SKIP

    [Tree('dog', ['I', "'m", 'a']), Tree('cat', ['This', 'is', Tree('friends',

    ['my', "'"]), Tree('tabby', ['-LRB-', 'the', '-RRB-'])])]

    """

    _OUTPUT_FORMAT = "conll"
    _MAIN_CLASS = "edu.stanford.nlp.pipeline.StanfordCoreNLP"
    _JAR = r"stanford-corenlp-(\d+)(\.(\d+))+\.jar"
    _MODEL_JAR_PATTERN = r"stanford-corenlp-(\d+)(\.(\d+))+-models\.jar"
    _USE_STDIN = True
    _DOUBLE_SPACED_OUTPUT = True

    def __init__(self, *args, **kwargs):
        warnings.warn(
            "The StanfordNeuralDependencyParser will be deprecated\n"
            "Please use \033[91mnltk.parse.corenlp.CoreNLPDependencyParser\033[0m instead.",
            DeprecationWarning,
            stacklevel=2,
        )

        super().__init__(*args, **kwargs)
        self.corenlp_options += "-annotators tokenize,ssplit,pos,depparse"

    def tagged_parse_sents(self, sentences, verbose=False):
        """

        Currently unimplemented because the neural dependency parser (and

        the StanfordCoreNLP pipeline class) doesn't support passing in pre-

        tagged tokens.

        """
        raise NotImplementedError(
            "tagged_parse[_sents] is not supported by "
            "StanfordNeuralDependencyParser; use "
            "parse[_sents] or raw_parse[_sents] instead."
        )

    def _make_tree(self, result):
        return DependencyGraph(result, top_relation_label="ROOT")